Sensor gives valuable data for neurological diseases and treatments

Apr 19, 2010 by Brian Wallheimer

A new biosensor developed at Purdue University can measure whether neurons are performing correctly when communicating with each other, giving researchers a tool to test the effectiveness of new epilepsy or seizure treatments.

Marshall Porterfield, an associate professor of agricultural and biological engineering and , postdoctoral researcher Eric McLamore, and graduate student Subhashree Mohanty developed the self-referencing glutamate biosensor to measure real-time glutamate flux of neural cells in a living organism. The nanosensor not only measures glutamate around neural cells, it can tell how those cells are releasing or taking up glutamate, a key to those cells' health and activity.

"Before we did this, people were only getting at glutamate indirectly or through huge, invasive probes," said Porterfield, whose research was published in the early online version of the Journal of Neuroscience Methods. "With this sensor, we can 'listen' to glutamate signaling from the cells."

The firing of neurons is involved in every action or movement in a human body. Neurons work electrically, but ultimately communicate with each other through chemical neurotransmitters such as glutamate. One neuron will release glutamate to convey information to the next neuron's cell receptors.

Once the message is delivered, neurons are supposed to reabsorb or clear out the glutamate signal. It is believed that when neurons release too much or too little glutamate and are not able to clear it properly, people are prone to neurological diseases.

Jenna Rickus, an associate professor of agricultural and biological engineering and biomedical engineering who oversaw the study's neurological aspects, said researchers need more information about how neurons work to create more effective treatments for neurological disorders.

"Understanding dynamics has implications for almost all normal and pathological ," Rickus said. "The reason we don't have good information is because we haven't had a good measurement tool before."

Porterfield and McLamore's sensor exploits conductive carbon nanotubes and is only 2 micrometers in diameter, or about 50 times smaller than the diameter of a human hair. They also use an enzyme, called glutamate oxidase, on the end of the probe that reacts with glutamate to create hydrogen peroxide. The carbon nanotubes enhance the conductivity of the hydrogen peroxide, and a computer can calculate the movement of glutamate relative to the cell surface.

The sensor oscillates and samples the concentration activities of glutamate at various positions relative to the neurons in culture. Those measurements at different distances can tell researchers whether the glutamate is flowing back toward the neurons or dissipating in many directions.

Current sensor technology allows for sensing in vitro, but those probes are large and invasive, Porterfield said, and they don't measure the movement of the chemicals.

McLamore said the sensor also is valuable because it is able to hone in on only glutamate using just one probe and custom software that filters out variations in the signals that are read, which removes signal noise due to other compounds.

"There are many compounds present near the neurons which can potentially create noise, but this sensor should be selective for one compound. We filter out all of the background noise," McLamore said. "It's the same thing modern hearing aids do. They're filtering out ambient noises, and that's the same thing you get when you oscillate a ."

The sensor also could be adapted to measure other chemicals by changing the enzyme used on its tip.

Rickus said the sensor's versatility would be valuable for understanding the effects of therapies for epilepsy, Parkinson's disease, damage caused by chemotherapy, memory loss and many other conditions. The sensor will give valuable data on how damaged function and how drugs or therapies affect those cells.

Porterfield said the next step is to make small improvements to the sensor and adapt it to use other enzymes. The Office of Naval Research funded the research.

Explore further: Long-term effects of battle-related 'blast plus impact' concussive TBI in US military

Related Stories

Revolutionary nanotechnology illuminates brain cells at work

May 30, 2005

Until now it has been impossible to accurately measure the levels of important chemicals in living brain cells in real time and at the level of a single cell. Scientists at the Carnegie Institution's Department of Plant Biology ...

Pain in fibromyalgia is linked to changes in brain molecule

Mar 10, 2008

Researchers at the University of Michigan Health System have found a key linkage between pain and a specific brain molecule, a discovery that lends new insight into fibromyalgia, an often-baffling chronic pain condition.

Neurotransmitter defect may trigger autoimmune disease

Oct 06, 2008

A potentially blinding neurological disorder, often confused with multiple sclerosis (MS), has now become a little less mysterious. A new study by researchers at the Mayo Clinic in Rochester, Minnesota, may have uncovered ...

Neuron study could lead to enhanced memory

May 10, 2006

A study by Chinese scientists suggests that electrical stimulation of non-functional brain neurons can induce the production of amino acids and improve memory.

Recommended for you

Turning off depression in the brain

12 hours ago

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Rapid whole-brain imaging with single cell resolution

13 hours ago

A major challenge of systems biology is understanding how phenomena at the cellular scale correlate with activity at the organism level. A concerted effort has been made especially in the brain, as scientists are aiming to ...

User comments : 0

More news stories

Chronic inflammation linked to 'high-grade' prostate cancer

Men who show signs of chronic inflammation in non-cancerous prostate tissue may have nearly twice the risk of actually having prostate cancer than those with no inflammation, according to results of a new study led by researchers ...

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...