A brain-recording device that melts into place

Apr 18, 2010
Neural electrode array wrapped onto a model of the brain. The wrapping process occurs spontaneously, driven by dissolution of a thin, supporting base of silk. Credit: Please credit C. Conway and J. Rogers, Beckman Institute

Scientists have developed a brain implant that essentially melts into place, snugly fitting to the brain's surface. The technology could pave the way for better devices to monitor and control seizures, and to transmit signals from the brain past damaged parts of the spinal cord.

"These have the potential to maximize the contact between electrodes and tissue, while minimizing damage to the brain. They could provide a platform for a range of devices with applications in epilepsy, and other neurological disorders," said Walter Koroshetz, M.D., deputy director of the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health.

The study, published in , shows that the ultrathin flexible implants, made partly from silk, can record more faithfully than thicker implants embedded with similar electronics.

The simplest devices for recording from the brain are needle-like electrodes that can penetrate deep into brain tissue. More state-of-the-art devices, called micro-electrode arrays, consist of dozens of semi-flexible wire electrodes, usually fixed to rigid silicon grids that do not conform to the brain's shape.

In people with epilepsy, the arrays could be used to detect when seizures first begin, and deliver pulses to shut the seizures down. In people with injuries, the technology has promise for reading complex signals in the brain that direct movement, and routing those signals to healthy muscles or prosthetic devices.

"The focus of our study was to make ultrathin arrays that conform to the complex shape of the brain, and limit the amount of tissue damage and inflammation," said Brian Litt, M.D., an author on the study and an associate professor of neurology at the University of Pennsylvania School of Medicine in Philadelphia. The silk-based implants developed by Dr. Litt and his colleagues can hug the brain like shrink wrap, collapsing into its grooves and stretching over its rounded surfaces.

The implants contain metal electrodes that are 500 microns thick, or about five times the thickness of a human hair. The absence of sharp electrodes and rigid surfaces should improve safety, with less damage to brain tissue. Also, the implants' ability to mold to the brain's surface could provide better stability; the brain sometimes shifts in the skull and the implant could move with it. Finally, by spreading across the brain, the implants have the potential to capture the activity of large networks of brain cells, Dr. Litt said.

Besides its flexibility, silk was chosen as the base material because it is durable enough to undergo patterning of thin metal traces for electrodes and other electronics. It can also be engineered to avoid inflammatory reactions, and to dissolve at controlled time points, from almost immediately after implantation to years later. The electrode arrays can be printed onto layers of polyimide (a type of plastic) and silk, which can then be positioned on the brain.

To make and test the silk-based implants, Dr. Litt collaborated with scientists at the University of Illinois in Urbana-Champaign and at Tufts University outside Boston. John Rogers, Ph.D., a professor of materials science and engineering at the University of Illinois, invented the flexible electronics. David Kaplan, Ph.D., and Fiorenzo Omenetto, Ph.D., professors of biomedical engineering at Tufts, engineered the tissue-compatible silk. Dr. Litt used the electronics and silk technology to design the implants, which were fabricated at the University of Illinois.

Recently, the team described a flexible silicon device for recording from the heart and detecting an abnormal heartbeat.

In the current study, the researchers approached the design of a brain implant by first optimizing the mechanics of silk films and their ability to hug the brain. They tested electrode arrays of varying thickness on complex objects, brain models and ultimately in the brains of living, anesthetized animals.

The arrays consisted of 30 electrodes in a 5x6 pattern on an ultrathin layer of polyimide - with or without a silk base. These experiments led to the development of an array with a mesh base of polyimide and silk that dissolves once it makes contact with the brain - so that the array ends up tightly hugging the brain.

Next, they tested the ability of these implants to record the animals' brain activity. By recording signals from the brain's visual center in response to visual stimulation, they found that the ultrathin polyimide-silk arrays captured more robust signals compared to thicker implants.

In the future, the researchers hope to design implants that are more densely packed with electrodes to achieve higher resolution recordings.

"It may also be possible to compress the silk-based implants and deliver them to the brain, through a catheter, in forms that are instrumented with a range of high performance, active electronic components," Dr. Rogers said.

Explore further: Serotonin neuron subtypes: New insights could inform SIDS understanding, depression treatment

Provided by National Institutes of Health

4.8 /5 (13 votes)

Related Stories

A wider range of sounds for the deaf

Jun 08, 2007

More than three decades ago, scientists pursued the then-radical idea of implanting tiny electronic hearing devices in the inner ear to help profoundly deaf people. An even bolder alternative that promised superior results ...

Reading the brain without poking it

Jun 29, 2009

Experimental devices that read brain signals have helped paralyzed people use computers and may let amputees control bionic limbs. But existing devices use tiny electrodes that poke into the brain. Now, a ...

Recommended for you

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Henka
not rated yet Apr 19, 2010
Makes me think of the "neural lace" implant from the Culture scifi series... fascinating stuff.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.