Researchers prove the gene responsible for Duchenne muscular dystrophy can be repaired

Apr 15, 2010

Researchers from Université Laval's Faculty of Medicine and the CHUQ Research Center have proven that it is possible to repair the defective gene responsible for Duchenne muscular dystrophy. The team, led by Professor Jacques P. Tremblay, is presenting its new therapeutic approach in an article published today in the online version of the scientific journal Gene Therapy.

Duchenne is a hereditary disease affecting one in 3,500 males. It causes progressive degeneration that begins in early childhood and causes death by age 25 in most people afflicted. The disease is caused by mutations that affect a protein called "dystrophin." The mutations alter the normal nucleotide sequences of this protein's gene and stop its synthesis.

Professor Tremblay's team partnered with Cellectis, a French firm specializing in genome engineering, in order to design enzymes—called meganucleases—with the ability to correct the dystrophin gene. During in vitro testing, the researchers inserted coding for a variety of meganucleases into human muscle cells. They repeated the experiment in vivo with mice carrying the mutation that causes the illness. Both series of testing showed that the meganucleases can lead to a restoration of the normal nucleotide sequences of the dystrophin gene and its expression in muscle cells.

A number of hurdles must be overcome before this approach can be tested in humans, cautions Dr. Tremblay. "It must first be proven in laboratory animals that it is possible to insert a meganuclease targeting the dystrophin gene directly into muscle cells, and that this will induce the synthesis of dystrophin able to attach to the muscle fiber membrane," explains the researcher. "We're still two to three years away from this stage," he estimates. "Subsequent stages, including human trials, could take even longer," adds Dr. Tremblay.

Explore further: Science of romantic relationships includes gene factor

add to favorites email to friend print save as pdf

Related Stories

Researchers develop mouse model for muscle disease

Sep 05, 2006

Researchers from the University of Minnesota have identified the importance of a gene critical to normal muscle function, resulting in a new mouse model for a poorly understood muscle disease in humans.

Recommended for you

Science of romantic relationships includes gene factor

13 hours ago

(Medical Xpress)—Adolescents worry about passing tests, winning games, lost phones, fractured bones—and whether or not they will ever really fall in love. Three Chinese researchers have focused on that ...

Stress reaction may be in your dad's DNA, study finds

Nov 21, 2014

Stress in this generation could mean resilience in the next, a new study suggests. Male mice subjected to unpredictable stressors produced offspring that showed more flexible coping strategies when under ...

More genetic clues found in a severe food allergy

Nov 21, 2014

Scientists have identified four new genes associated with the severe food allergy eosinophilic esophagitis (EoE). Because the genes appear to have roles in other allergic diseases and in inflammation, the ...

Brain-dwelling worm in UK man's head sequenced

Nov 20, 2014

For the first time, the genome of a rarely seen tapeworm has been sequenced. The genetic information of this invasive parasite, which lived for four years in a UK resident's brain, offers new opportunities ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.