Researchers prove the gene responsible for Duchenne muscular dystrophy can be repaired

Apr 15, 2010

Researchers from Université Laval's Faculty of Medicine and the CHUQ Research Center have proven that it is possible to repair the defective gene responsible for Duchenne muscular dystrophy. The team, led by Professor Jacques P. Tremblay, is presenting its new therapeutic approach in an article published today in the online version of the scientific journal Gene Therapy.

Duchenne is a hereditary disease affecting one in 3,500 males. It causes progressive degeneration that begins in early childhood and causes death by age 25 in most people afflicted. The disease is caused by mutations that affect a protein called "dystrophin." The mutations alter the normal nucleotide sequences of this protein's gene and stop its synthesis.

Professor Tremblay's team partnered with Cellectis, a French firm specializing in genome engineering, in order to design enzymes—called meganucleases—with the ability to correct the dystrophin gene. During in vitro testing, the researchers inserted coding for a variety of meganucleases into human muscle cells. They repeated the experiment in vivo with mice carrying the mutation that causes the illness. Both series of testing showed that the meganucleases can lead to a restoration of the normal nucleotide sequences of the dystrophin gene and its expression in muscle cells.

A number of hurdles must be overcome before this approach can be tested in humans, cautions Dr. Tremblay. "It must first be proven in laboratory animals that it is possible to insert a meganuclease targeting the dystrophin gene directly into muscle cells, and that this will induce the synthesis of dystrophin able to attach to the muscle fiber membrane," explains the researcher. "We're still two to three years away from this stage," he estimates. "Subsequent stages, including human trials, could take even longer," adds Dr. Tremblay.

Explore further: Research uncovers DNA looping damage tied to HPV cancer

add to favorites email to friend print save as pdf

Related Stories

Researchers develop mouse model for muscle disease

Sep 05, 2006

Researchers from the University of Minnesota have identified the importance of a gene critical to normal muscle function, resulting in a new mouse model for a poorly understood muscle disease in humans.

Recommended for you

Research uncovers DNA looping damage tied to HPV cancer

2 hours ago

It's long been known that certain strains of human papillomavirus (HPV) cause cancer. Now, researchers at The Ohio State University have determined a new way that HPV might spark cancer development – by ...

New therapy against rare gene defects

Apr 15, 2014

On 15th April is the 1st International Pompe Disease Day, a campaign to raise awareness of this rare but severe gene defect. Pompe Disease is only one of more than 40 metabolic disorders that mainly affect children under ...

User comments : 0

More news stories

HIV+ women respond well to HPV vaccine

HIV-positive women respond well to a vaccine against the human papillomavirus (HPV), even when their immune system is struggling, according to newly published results of an international clinical trial. The study's findings ...

Progress in the fight against quantum dissipation

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...

Revealing camouflaged bacteria

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...