Primary cilia formation provides insight into genetic diseases

Apr 14, 2010

A team of scientists at the University of California, San Diego School of Medicine have identified a network of genes that initiate and manage cilia formation. Although scientists have known about cilia for decades, only recently have they discovered their role in disease. This new discovery, which may lead to new therapies for ciliopathies, will appear in the April 15 edition of Nature.

Primary cilia are small, hair-like appendages attached to the surface of human cells. They act like antennae, sensing and evaluating extracellular signals to coordinate the development and stability of a wide variety of organs. Ciliopathies are a newly emerging group of caused by defects in the function or structure of cellular primary cilia. These diseases present symptoms such as mental retardation, retinal blindness, obesity, polycystic kidney disease, , ataxia and some forms of cancer.

The scientists, led by Joe Gleeson, MD, professor of neurosciences and pediatrics at UC San Diego and a Howard Hughes Medical Institute Investigator, and Joon Kim, a UC San Diego postdoctoral fellow, utilized a high-throughput, cell-based screen to evaluate the impact of more than 8,000 genes and their relation to cilia function and development.

"Utilizing high-throughput screening, we were able view a wider array of the genes implicated in ciliopathies and enact systematic approaches, which enabled us to gain deeper insight into the molecular mechanisms of cilia formation," said Gleeson.

Additional investigation revealed that the endocytic recycling pathway, which absorbs and processes , also plays a key role in primary cilia formation. The scientists also identified protein groups that are key modulators between cilia and the endocytic recycling pathway. These findings suggest that there are specific protein targets for the development of ciliopathy therapy, according to Gleeson.

When cytochalasin D, a small molecule which permeates cells and inhibits cytoskeleton polymerization, was applied to one of the identified proteins, it repaired cilium formation in cells carrying mutations.

"While the use of cytochalasin D is not a viable solution in patients because of its toxicity, we now know that pharmacological solutions for ciliopathy exist," said Kim.

The research team intends to continue searching for "cleaner" small molecules, which can be utilized for ciliopathy treatment.

Explore further: Are my muscular dystrophy drugs working?

add to favorites email to friend print save as pdf

Related Stories

Mutations in gene linked to ciliopathies

Aug 09, 2009

An international team of scientists, led by researchers at the University of California, San Diego School of Medicine, have discovered a connection between mutations in the INPP5E gene and ciliopathies. Their findings, which ...

Researchers find new insights into inherited retinal disease

Jan 17, 2010

An international team of scientists, led by researchers at the University of California, San Diego School of Medicine have discovered new links between a common form of inherited blindness affecting children and a gene known ...

Scientists study cilia -- microscopic hair

May 05, 2006

Texas scientists studying microscopic hairs called cilia say they found an internal structure that's responsible for a cell's response to external signals.

New insight into human ciliopathy

Aug 04, 2009

In the September 1st issue of G&D, Dr. Karen Oegema (UCSD) and colleagues identify the molecular basis of the lethal developmental disorder, hydrolethalus syndrome, and reveal that hydrolethalus syndrome actually belongs to the ...

Recommended for you

Are my muscular dystrophy drugs working?

10 hours ago

People with muscular dystrophy could one day assess the effectiveness of their medication with the help of a smartphone-linked device, a new study in mice suggests. The study used a new method to process ...

Cell death proteins key to fighting disease

21 hours ago

Melbourne researchers have uncovered key steps involved in programmed cell death, offering new targets for the treatment of diseases including lupus, cancers and neurodegenerative diseases.

Unlocking the secrets of pulmonary hypertension

Oct 30, 2014

A UAlberta team has discovered that a protein that plays a critical role in metabolism, the process by which the cell generates energy from foods, is important for the development of pulmonary hypertension, a deadly disease.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.