Sequence is scaffold to study sleeping sickness

Apr 13, 2010

Researchers have made a further step toward understanding sleeping sickness - a chronic disease caused by Trypanosoma parasites, which affect the human central nervous system. The team have generated a high-quality draft genome sequence for the strain of Trypanosoma brucei that is responsible for almost all reported cases of human African trypanosomiasis, also known as sleeping sickness.

The study is published on April 13 in the open access journal, PLoS Neglected Tropical Diseases.

The T. brucei genome sequence previously used for research was obtained from a bovine infecting strain, harmless to humans.

The team sequenced the entire genome of the pathogenic subspecies T. b. gambiense and compared this with the genome sequence of its non-human infecting relative, Trypanosoma brucei brucei. Both genomes are subspecies of the T. brucei family. The team wanted to answer two questions: is the existing T. brucei brucei sequence representative of the full diversity of T. brucei parasites? And, is there anything in the T. b. gambiense genome that might explain its ability to infect and thrive in human populations?

"Historically, has been a severely neglected disease," says Dr Matt Berriman, leader of the Parasite Genomics group at the Wellcome Trust Sanger Institute and an author on the study, "with considerable impact on human health and the wellbeing and prosperity of communities.

"To move research forward, we needed to answer a critical question: is the T. b. brucei reference a suitable scaffold for exploring the genomes of the full diversity of T. brucei?"

The genome comparison threw up a remarkable level of similarity between T. b. brucei and T. b. gambiense - just a single locus was unique to T. b. brucei. Moreover, the sequences of comparable genes were, on average, 98.2 per cent identical. Because the genomes were so similar, the team could say with confidence that the T. b. brucei parasite and its genome are good models for future experiments to understand the biology of T. b. gambiense.

The similarity between the two genomes also suggested that the source of T. b. gambiense's ability to infect humans cannot be explained simply by the addition or removal of a few genes.

"The two sequences we looked at were extremely similar," says Dr Andrew Jackson, from the Wellcome Trust Sanger Institute and lead author on the study, "with no obvious genetic causes for the differences between T. b. gambiense and T. b. brucei. Changes in the phenotype - the physical characteristics - seem to be down to more subtle changes in genetic information.

"Single letter changes in the genome; differences in the number of copies of genes; changes in how the activity of genes is regulated - all of these genetic nuances could play that crucial role in determining why T. b. gambiense behaves so differently to T. b. brucei."

With two high quality reference genome sequences in place for the T. brucei strains, the search for those small genetic differences is given a boost. It is this search that will fuel the pursuit of targeted drug treatments to tackle T. b. gambiense.

Patients are often wary of treatment because the side effects of current treatments can be unpleasant and sometimes severe. We know that the different Trypanosoma subspecies are susceptible to different drugs and the genome sequences could help the search for new regions of the parasite's molecular make-up against which drugs might be targeted.

The research also looked in far more detail than ever before at the evolution of the parasite's complex system to dupe human and animal immune systems.

Trypanosomes possess a very effective set of proteins - called VSGs - which reside at the surface of the cell and can form a kind of invisibility cloak to protect the parasite from immune response. By successively activating members of this large protein family, the parasites can stay one step ahead of the host immune system and so thrive undetected in the human bloodstream.

"The armoury of VSGs at the parasite's disposal mean that it can stay one step ahead," explains Dr Christiane Hertz-Fowler, from the Sanger Institute and senior author on the study. "Because of their role, VSGs are among the most-rapidly evolving genes in parasite genomes. So we were surprised to find that as many as 88 per cent of VSGs remained consistent between our T. b. brucei and T. b. gambiense genomes. This has implications for epidemiological studies in the future.

"It means that researchers can produce a global library of VSGs found in T. brucei strains, allowing them to categorise T. brucei strains found in the field according the precise set of VSGs they possess."

This catalogue of VSGs might also provide further clues to human infectivity. The research community can now peer into the make-up of genes at the cell surface - one of the best places to search for those subtle differences that empower T. b. gambiense to infect human populations.

The high quality reference sequences for the two subspecies of T. brucei lay the foundation for epidemiological studies looking at multiple samples. Teams can now look to next-generation sequencing technologies to study multiple isolates, which should throw further light on how the genetic make-up of these can cause distinctive disease in humans.

Explore further: West Africa's Ebola outbreak prompts changes in I.Coast cuisine

More information: Jackson AP et al. (2010) The genome sequence of Trypanosoma brucei gambiense, causative agent of chronic Human African Trypanosomiasis. PLoS Neglected Tropical Diseases. Published online before print at: dx.plos.org/10.1371/journal.pntd.0000658

add to favorites email to friend print save as pdf

Related Stories

Sleeping sickness finding could lead to earlier diagnosis

Apr 14, 2008

Sleeping sickness creates a metabolic 'fingerprint' in the blood and urine, which could enable a new test to be developed to diagnose the disease, according to new research published today in the journal Proceedings of th ...

Loosely coiled DNA helps trypanosomes make their escape

Jan 11, 2010

(PhysOrg.com) -- To escape the grip of the human immune system, Trypanosoma brucei, which causes African sleeping sickness, performs its acclaimed disappearing act. Every time the host’s immune cells get close to eliminating ...

Learning the language of gene expression

Jan 19, 2007

Researchers have taken a major step towards understanding the language of gene regulation in the fruitfly Drosophila and they expect the technique to be rapidly applicable to understanding the effects of genome variation ...

New genome sequencing targets announced

Jul 24, 2006

The U.S. National Human Genome Research Institute has announced several new sequencing targets, including the northern white-cheeked gibbon.

Recommended for you

Two expats die of MERS in Saudi commercial hub

21 hours ago

Two foreigners died of MERS in the Saudi city of Jeddah, the health ministry said Saturday, as fears rise over the spreading respiratory virus in the kingdom's commercial hub.

UAE reports 12 new cases of MERS

21 hours ago

Health authorities in the United Arab Emirates have announced 12 new cases of infection by the MERS coronavirus, but insisted the patients would be cured within two weeks.

Filipino tests negative for Middle East virus

Apr 19, 2014

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

User comments : 0

More news stories

Cancer stem cells linked to drug resistance

Most drugs used to treat lung, breast and pancreatic cancers also promote drug-resistance and ultimately spur tumor growth. Researchers at the University of California, San Diego School of Medicine have discovered ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.