Weak link in Alzheimer's drug candidates

Apr 06, 2010

(PhysOrg.com) -- Some current therapies being investigated for Alzheimer's disease may cause further neural degeneration and cell death, according to a breakthrough discovery by UC San Diego researchers.

By combining three dimensional with high-resolution, atomic-force microscopy membrane protein and cell imaging, electrical recording and various cellular assays, UCSD nano-biophysicist Ratnesh Lal and his colleagues investigated the structure and function of truncated peptides, known as nonamyloidgenic peptides, formed by some Alzheimer's drug candidates.

The researchers found that the nonamyloidgenic peptides formed active ion channels that caused the cells to take in very high levels of calcium ions, which damaged synaptic efficiency and eventually killed neurons, neurons that are linked to memory loss in .

As a result of their current findings and related previous work, Lal and his colleagues believe that aggregate-forming amyloidogenic peptides promote by forming holes or channels in cell membranes, disturbing ionic homeostasis by allowing unwanted ion flow in-and-out of cells, and most importantly allowing toxic amounts of into .

Truncated, shorter non-amyloidogenic peptide fragments that also form ion channels and alter neuronal viability, are assumed by biomedical researchers to be non-toxic and are currently targeted to treat Alzheimer's disease patients. Details of their research were recently published in a paper entitled “Truncated β-amyloid peptide channels provide an alternative mechanism for Alzheimer's Disease and Down syndrome” in the Proceedings of the National Academy of Sciences.

"There are several drugs to treat Alzheimer’s in Trials I and II, but we don't believe that they will be adopted for clinical usage," said Lal, a joint professor in the UCSD Jacobs School of Engineering’s Department of Mechanical and Aerospace Engineering and Bioengineering. We believe we are providing the most direct mechanism of Alzheimer’s disease and Down Syndrome pathology. "Through our research we have provided a structure and mechanism (an ion channel) that can account for the pathology. The strategy to control the activity of this structure — the opening and closing of the channel — should be targeted for an effective treatment."

Lal and his colleagues are now working on a 3D structural model of the ion channel using their data to identify the domains (or sites) of the channel for designing effective therapeutics. Lal said the use of advanced nanotechnology and biology combined with a multi disciplinary approach, aided in the researchers’ breakthrough discovery.

"Without advances in technology and a multi disciplinary approach this kind of complex research would not move forward," said Lal, a trained physicist and neurobiologist who joined the UCSD faculty in January 2010 from the University of Chicago. "My goal is to provide practical solutions for effective human health management using advances in nanoscience and technology with a multidisciplinary and multi-scale (nano-to-translational) integrated approach," he added.

Explore further: Vegetable oil ingredient key to destroying gastric disease bacteria

Related Stories

New mechanism links smoking to lung damage

Aug 07, 2007

In the August 7, 2007, issue of PLoS One, researchers show how a poorly understood and previously unsuspected mechanism may be the key to understanding how life-style associated forms of oxidative stress, such as exposure ...

Unraveling the mysteries of poison

Apr 13, 2006

Researchers from the Max Planck Institite for Biophysical Chemistry and other German and French colleagues have combined magnetic resonance spectroscopy (solid-state NMR) with special protein synthesis procedures to uncover ...

Revolution in understanding of ion channel regulation

Jan 30, 2008

A study at Rush University Medical Center in Chicago published this week in the online version of Biophysical Journal proposes that bubbles may control the opening and closing of ion channels. This new understanding of the ...

Recommended for you

A hybrid vehicle that delivers DNA

11 hours ago

A new hybrid vehicle is under development. Its performance isn't measured by the distance it travels, but rather the delivery of its cargo: vaccines that contain genetically engineered DNA to fight HIV, cancer, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.