New discovery is a significant boost to cancer research

Apr 04, 2010

A team of scientists led by the University of East Anglia (UEA) has discovered a brand new group of molecules which could help fight the spread of cancer and other diseases.

The new molecules are synthetic derivatives of a natural product known as UDP-Galactose, and block the activity of a group of enzymes called glycosyltransferases. Glycosyltransferases are used by to turn simple sugars into elongated sugar chains and branched structures.

Published online today by the journal Nature Chemical Biology, the findings could lead to a significant therapeutic advance in the treatment of cancer, inflammation and infection.

Many biological cells - including and - are literally covered by a coating of sugar. This sugar coating influences the way cells communicate with their environment and with each other.

For example, when a cancer spreads through the body or a bacterium infiltrates its many of the contacts the rogue cells make with other cells are through these sugars on their cell surface.

To form the complex sugar structures that decorate their surface, cells rely on gylcosyltransferases to join individual building blocks together. The UEA researchers have found that synthetic UDP-Galactose derivatives block these enzymes effectively. These molecules can therefore potentially be used to interfere with harmful biological processes such as and bacterial infection.

The work was carried out by researchers at UEA's School of Pharmacy, working alongside colleagues at the Carlsberg Research Centre in Denmark.

"This exciting discovery of a potent enzyme inhibitor with a completely new mechanism of action has considerable therapeutic potential in cancer, inflammation and infection," said lead author Dr Gerd Wagner of UEA.

"Our results also provide a general strategy for how to design and improve such inhibitors in the future. The 'snapshots' we have taken of one of these enzymes, together with the new inhibitor itself, can provide very valuable guidance for the development of new anti-cancer and anti-infective drug candidates."

Explore further: Breakthrough points to new drugs from nature

More information: 'Structural and mechanistic basis for a new mode of glycosyltransferase inhibition' by T Pesnot (UEA), R Jorgensen (Carlsberg Research Centre, Copenhagen), M Palcic (Carlsberg Research Centre, Copenhagen) and G Wagner (UEA) is published in Nature Chemical Biology online on April 4.

Provided by University of East Anglia

4.9 /5 (12 votes)

Related Stories

Hybrid molecule causes cancer cells to self-destruct

Jan 03, 2007

By joining a sugar to a short-chain fatty acid compound, Johns Hopkins researchers have developed a two-pronged molecular weapon that kills cancer cells in lab tests. The researchers cautioned that their double-punch molecule, ...

Cancer-fighting antibodies

Dec 22, 2008

(PhysOrg.com) -- MIT engineers have found that antibodies do not need a particular sugar attachment long believed to be essential to their function, a discovery that could make producing therapeutic antibodies ...

Potential new therapeutic molecular target to fight cancer

Nov 01, 2007

Researchers at the Virginia Commonwealth University Massey Cancer Center have identified the enzyme sphingosine kinase 2 as a possible new therapeutic target to improve the efficacy of chemotherapy for colon and breast cancer.

Recommended for you

Breakthrough points to new drugs from nature

3 hours ago

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

World's first successful visualisation of key coenzyme

3 hours ago

Japanese researchers have successfully developed the world's first imaging method for visualising the behaviour of nicotine-adenine dinucleotide derivative (NAD(P)H), a key coenzyme, inside cells. This feat ...

User comments : 0

More news stories

A greener source of polyester—cork trees

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...

Breakthrough points to new drugs from nature

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

A beautiful, peculiar molecule

"Carbon is peculiar," said Nobel laureate Sir Harold Kroto. "More peculiar than you think." He was speaking to a standing-room-only audience that filled the Raytheon Amphitheater on Monday afternoon for the ...