New discovery is a significant boost to cancer research

Apr 04, 2010

A team of scientists led by the University of East Anglia (UEA) has discovered a brand new group of molecules which could help fight the spread of cancer and other diseases.

The new molecules are synthetic derivatives of a natural product known as UDP-Galactose, and block the activity of a group of enzymes called glycosyltransferases. Glycosyltransferases are used by to turn simple sugars into elongated sugar chains and branched structures.

Published online today by the journal Nature Chemical Biology, the findings could lead to a significant therapeutic advance in the treatment of cancer, inflammation and infection.

Many biological cells - including and - are literally covered by a coating of sugar. This sugar coating influences the way cells communicate with their environment and with each other.

For example, when a cancer spreads through the body or a bacterium infiltrates its many of the contacts the rogue cells make with other cells are through these sugars on their cell surface.

To form the complex sugar structures that decorate their surface, cells rely on gylcosyltransferases to join individual building blocks together. The UEA researchers have found that synthetic UDP-Galactose derivatives block these enzymes effectively. These molecules can therefore potentially be used to interfere with harmful biological processes such as and bacterial infection.

The work was carried out by researchers at UEA's School of Pharmacy, working alongside colleagues at the Carlsberg Research Centre in Denmark.

"This exciting discovery of a potent enzyme inhibitor with a completely new mechanism of action has considerable therapeutic potential in cancer, inflammation and infection," said lead author Dr Gerd Wagner of UEA.

"Our results also provide a general strategy for how to design and improve such inhibitors in the future. The 'snapshots' we have taken of one of these enzymes, together with the new inhibitor itself, can provide very valuable guidance for the development of new anti-cancer and anti-infective drug candidates."

Explore further: Selenium compounds boost immune system to fight against cancer

More information: 'Structural and mechanistic basis for a new mode of glycosyltransferase inhibition' by T Pesnot (UEA), R Jorgensen (Carlsberg Research Centre, Copenhagen), M Palcic (Carlsberg Research Centre, Copenhagen) and G Wagner (UEA) is published in Nature Chemical Biology online on April 4.

Provided by University of East Anglia

4.9 /5 (12 votes)

Related Stories

Hybrid molecule causes cancer cells to self-destruct

Jan 03, 2007

By joining a sugar to a short-chain fatty acid compound, Johns Hopkins researchers have developed a two-pronged molecular weapon that kills cancer cells in lab tests. The researchers cautioned that their double-punch molecule, ...

Cancer-fighting antibodies

Dec 22, 2008

(PhysOrg.com) -- MIT engineers have found that antibodies do not need a particular sugar attachment long believed to be essential to their function, a discovery that could make producing therapeutic antibodies ...

Potential new therapeutic molecular target to fight cancer

Nov 01, 2007

Researchers at the Virginia Commonwealth University Massey Cancer Center have identified the enzyme sphingosine kinase 2 as a possible new therapeutic target to improve the efficacy of chemotherapy for colon and breast cancer.

Recommended for you

Molecules that came in handy for first life on Earth

Nov 24, 2014

For the first time, chemists have successfully produced amino acid-like molecules that all have the same 'handedness', from simple building blocks and in a single test tube. Could this be how life started. ...

Jumping hurdles in the RNA world

Nov 21, 2014

Astrobiologists have shown that the formation of RNA from prebiotic reactions may not be as problematic as scientists once thought.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.