Study derives floor plate tissue from embryonic stem cells

Apr 01, 2010

Christopher Fasano, PhD, from the New York Neural Stem Cell Institute, is lead author on a study that investigating human neural development. Dr. Fasano conducted this work while working as a post-doctoral fellow at Memorial Sloan Kettering Cancer Center in the lab of Dr. Lorenz Studer. Dr. Fasano and his colleagues used human embryonic stem cells (hESC) to derive floor plate tissue, an important signaling center during brain development.

The study, Efficient derivation of functional floor plate tissue from human embryonic stem cells, was published in the online edition of Cell Stem Cell on April 1, 2010, and will also appear in the journal's print edition. In addition to Dr. Fasano, whose work is funded by NYSCF, a contributor to the study also included NYSCF-Druckenmiller Fellow, Dr. Gabsang Lee.

This is the first study shown to derive floor plate tissue from hESCs. Floor plate development is essential in the development of the brain. While floor plate development has been successful in a dish from non-human models before, the ability to develop floor plate tissue in humans is a significant advance for the study of neurological diseases. "We think this is a significant advance in the field of stem cell biology. For the first time we are able to create this unique population of cells that exists in the very early developing human brain," says Dr. Fasano. "Understanding how the brain develops will be key in understanding how brain diseases occur such as Parkinson's disease."

"We are very proud of Dr. Fasano. Research like this brings us closer to understanding the major that affect so many of our friends and family," says Susan L. Solomon, NYSCF's CEO. "In our own NYSCF laboratory, researchers are using human embryonic stem cells to derive cellular models for a wide variety of diseases, as a first step toward developing therapies. NYSCF is very proud to fund the work of young scientists that contributes so significantly to future healthcare. It is a privilege to have Dr. Fasano in our fellowship program."

As advancements in induced pluripotent stem (iPS) cell technology continue, hESC research like that of Dr. Fasano is essential for the field of stem cell research. are still the gold standard for monitoring pluripotency and differentiation capabilities.

"It is research like this that helps us understand what is causing the development of diseases," said Dr. Kevin Eggan, Chief Scientific Officer of NYSCF. "Chris is one of the premier young scientists in the field of stem cell research and we are excited to have him in our fellowship program."

Explore further: How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass?

Provided by New York Stem Cell Foundation

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Scientists create blood vessel cells from stem cells

Jan 22, 2010

New York Stem Cell Foundation (NYSCF)-Druckenmiller Fellow, Daylon James, PhD, of Weill Cornell Medial College, is lead author on a study defining conditions for generating a plentiful supply of endothelial (vessel lining) ...

Identification of a novel neural stem cell type

Jan 14, 2008

As published in the upcoming issue of G&D, sesearchers from the Sloan-Kettering Institute, led by Dr. Lorenz Studer, have discovered a novel type of neural stem cell, which has a broader differentiation potential than previously ...

New study hopeful on neural stem cells

Aug 05, 2006

Neural stem cells derived from federally approved human embryonic cells are inferior to stem cells derived from donated fetal tissue, a new study found.

An Inexhaustible Source of Neural Cells

Feb 17, 2009

(PhysOrg.com) -- Research scientists in Bonn, Germany, have succeeded in deriving so-called brain stem cells from human embryonic stem cells. These can not only be conserved almost indefinitely in culture, but can also serve ...

Recommended for you

The origin of the language of life

41 minutes ago

The genetic code is the universal language of life. It describes how information is encoded in the genetic material and is the same for all organisms from simple bacteria to animals to humans. However, the ...

Quest to unravel mysteries of our gene network

Dec 18, 2014

There are roughly 27,000 genes in the human body, all but a relative few of them connected through an intricate and complex network that plays a dominant role in shaping our physiological structure and functions.

EU court clears stem cell patenting

Dec 18, 2014

A human egg used to produce stem cells but unable to develop into a viable embryo can be patented, the European Court of Justice ruled on Thursday.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.