Microorganisms in toxic groundwater fine-tuned to survive

Mar 29, 2010
Microorganisms in toxic groundwater fine-tuned to survive
Researchers want to know more about the genetic makeup of "stressed" microbes that live in contaminated groundwater.

(PhysOrg.com) -- Microorganisms can indeed live in extreme environments, but the ones that do are highly adapted to survive and little else, according to a collaboration that includes Department of Energy's Oak Ridge National Laboratory and Joint Genome Institute (JGI) and the University of Oklahoma.

The metagenomic study of a "stressed" microbial community in groundwater near a former waste disposal pond site on DOE's Oak Ridge Reservation (ORR) revealed microbes with an overabundance of genes involved in DNA recombination and repair and other defense mechanisms for dealing with contaminants and other environmental stresses.

The studies, said ORNL researcher David Watson, are ultimately aimed at developing biologically based methods for reducing the level of the contaminants in the groundwater, which at the ORR site includes nitrates, solvents and heavy metals, including uranium.

"We are looking to better understand the evolution of microbes in the groundwater plume," Watson said. "The microbes that can break down nitrate into nitrogen can have a long-term benefit toward attenuating the plume."

Watson added that researchers particularly want to better understand the of microbes that can metabolize oxidized forms of uranium into a form that is only slightly soluble and thus easier to precipitate and remove from the environment.

ORNL's Watson was joined in the study by the University of Oklahoma's Jizhong Zhou and Christopher Hemme; Joint Genome Institute Director Eddy Rubin; and a team that included researchers from ORNL's Environmental Sciences Division, the University of Oklahoma's Institute for Environmental Genomics, Montana State University, Michigan State University and Lawrence Berkeley National Laboratory.

They found that the naturally occurring populations of microbes in the polluted groundwater--which consisted of only a few cell types-- had "very simple" genetic structures tuned primarily to overcoming the stresses presented by the toxic soup, which has a highly acidic pH level of 3.5.

The accumulation of genes involved in resistance and responses to stress appears to be a basic survival strategy that has left the with a marked loss in metabolic diversity.

The waste ponds, which are now part of the Oak Ridge Environmental Remediation Sciences Program Integrated Field Research Center, have been out of use for decades and were capped in 1983.

The research, recently published in the on-line ISME (International Society for Microbial Ecology) Journal, is sponsored by DOE's Office of Science.

Explore further: Breakthrough study discovers six changing faces of 'global killer' bacteria

Related Stories

New Window Opens on the Secret Life of Microbes

Mar 13, 2008

Nowhere is the principle of "strength in numbers" more apparent than in the collective power of microbes: despite their simplicity, these one-cell organisms -- which number about 5 million trillion trillion ...

Genome Institute Reaches Milestone with a Mighty Microbe

May 08, 2007

Shewanella baltica OS185 is a tiny, ocean-dwelling microbe that could be an answer to cleaning up certain kinds of radioactive contamination, but for a few days this month the microbe is in the spotlight at Los Alamos for ...

Recommended for you

Plants prepackage beneficial microbes in their seeds

Sep 29, 2014

Plants have a symbiotic relationship with certain bacteria. These 'commensal' bacteria help the pants extract nutrients and defend against invaders – an important step in preventing pathogens from contaminating fruits and ...

User comments : 0