Cutting Through Questions for a Molecular-Level Understanding of Solar Cells

Mar 25, 2010
Shown is a realistic model of a key interface in dye-sensitized solar cells. These models are an essential ingredient in predicting how fast electrons will move across the interface, and thus how efficient the solar cell is.

Electricity from sunlight could be possible using a robust, low-cost solar cell that uses dyes anchored on inexpensive titanium oxide, rather than highly pure and thus expensive bulk materials. Before commercial applications of these dye-sensitized solar cells are possible, efficiency and stability issues must be resolved.

Solving these issues requires a molecular-level understanding of materials and the associated reactions, according to Dr. Joost VandeVondele. A simulation expert at the University of Zurich, VandeVondele discussed his research on these issues at the Pacific Northwest National Laboratory's Frontiers in Catalysis Science and Engineering Seminar. This seminar, part of a series, features academic and other leaders in research and development.

To conduct this research into the behavior of atoms and molecules, VandeVondele and his team turned to CP2K. Known as the Swiss Army knife of molecular simulations, CP2K provides a wide variety of tools for scientists to use in understanding large, inhomogeneous collections of molecules.

Based on the models and simulations they created, VandeVondele and his team obtained a detailed understanding of the reactions that occur at the active interface in the solar cell. These interactions involve energy from sunlight, the gain and loss of electrons from dye molecules, and an iodide-based liquid electrolyte.

Specifically, the team created atomistic models of the dye binding to the titanium oxide surface and demonstrated a highly efficient pathway to regenerate the dye, a reaction that must occur for the cells to function. Also, this work has led to preliminary results for the electronic structure of the full interface and the movement of key electrons.

"Joost convincingly demonstrated the powerful combination of statistical mechanics and electronic structure using scalable software," said Christopher Mundy, a member of the audience and an expert in molecular modeling and simulation at PNNL. "Joost's work is a great example of how molecular simulation can impact our understanding of dye sensitized cells."

Explore further: Rubber meets the road with new ORNL carbon, battery technologies

add to favorites email to friend print save as pdf

Related Stories

Solar cells go thin and flimsy

Sep 04, 2006

The next generation of solar cells made out of plastics and microscopic crystals instead of silicon are taking shape at UQ (University of Queensland). UQ Master of Physics student Michael Deceglie is working ...

Taking nature’s cue for cheaper solar power

Apr 04, 2007

Solar cell technology developed by the University’s Nanomaterials Research Centre will enable New Zealanders to generate electricity from sunlight at a 10th of the cost of current silicon-based photo-electric ...

Substantial improvement in essential cheap solar cell process

Mar 20, 2008

A cheap alternative to silicon solar cells can be found in dye-sensitised solar cells. This type of cell imitates the natural conversion of sunlight into energy by, for instance, plants and light-sensitive bacteria. Annemarie ...

Recommended for you

Breaking benzene

4 hours ago

Aromatic compounds are found widely in natural resources such as petroleum and biomass, and breaking the carbon-carbon bonds in these compounds plays an important role in the production of fuels and valuable ...

User comments : 0