'Flying vaccinator': Can genetically engineered mosquitoes provide a new strategy against malaria?

Mar 18, 2010

Mosquitoes transmit infectious diseases to millions of people every year, including malaria for which there is no effective vaccine. New research published in Insect Molecular Biology reveals that mosquito genetic engineering may turn the transmitter into a natural 'flying vaccinator', providing a new strategy for biological control over the disease.

The research, led by Associate Professor Shigeto Yoshida from the Jichi Medical University in Japan, targets the saliva gland of the Anopheles stephensi , the main vectors of human malaria.

"Blood-sucking arthropods including mosquitoes, sand flies and ticks transmit numerous infectious agents during blood feeding," said Yoshida. "This includes malaria, which kills between 1-2 million people, mostly African children, a year. The lack of an effective vaccine means control of the carrier has become a crucial objective to combating the disease."

For the past decade it has been theorized that of the mosquito could create a 'flying vaccinator,' raising hopes for their use as a new strategy for control. However so far research has been limited to a study of the insect's gut and the 'flying vaccinator' theory was not developed.

"Following bites, protective immune responses are induced, just like a conventional vaccination but with no pain and no cost," said Yoshida. "What's more continuous exposure to bites will maintain high levels of protective immunity, through natural boosting, for a life time. So the insect shifts from being a pest to being beneficial."

In this study Dr. Yoshida's team successfully generated a transgenic mosquito expressing the Leishmania vaccine within its saliva. Bites from the insect succeeded in raising , indicating successful immunization with the Leishmania vaccine through blood feeding.

While 'flying vaccinator' theory may now be scientifically possible the question of ethics hangs over the application of the research. A natural and uncontrolled method of delivering vaccines, without dealing with dosage and consent, alongside public acceptance to the release of 'vaccinating' mosquitoes, provide barriers to this method of disease control.

"For the past decade it has been postulated that the salivary gland could be the way to gain biological control over this important infectious disease," concluded Yoshida. "In this study we have shown, for the first time, the achievement of the original concept of the 'flying vaccinator."

Explore further: New class of insecticides offers safer, more targeted mosquito control

More information: Yamamoto.D, Nagumo.H, Yoshida.S, “Flying vaccinator; a transgenic mosquito delivers a Leishmania vaccine via blood feeding,”, Insect Molecular Biology, March 2010, Wiley-Blackwell, DOI:10.1111/j.1365-2583.2010.01000.x

Related Stories

Recommended for you

The vital question: Why is life the way it is?

7 hours ago

The Vital Question: Why is life the way it is? is a new book by Nick Lane that is due out on April 23rd. His question is not one for a static answer but rather one for a series of ever sharper explanations—explanations that a ...

Food poisoning: New detection method for bacterial toxin

8 hours ago

The Bacillus cereus bacteria is one of the potential causes of food poisoning. Indeed, a recent study in Analytical and Bioanalytical Chemistry shows that this versatile pathogen produces 19 different varian ...

Detailing heterochromatin formation at the onset of life

9 hours ago

Antoine Peters and his group at the Friedrich Miescher Institute for Biomedical Research (FMI) have elucidated the mechanisms controlling the packaging of chromatin in the early embryo. They have identified ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.