'Flying vaccinator': Can genetically engineered mosquitoes provide a new strategy against malaria?

Mar 18, 2010

Mosquitoes transmit infectious diseases to millions of people every year, including malaria for which there is no effective vaccine. New research published in Insect Molecular Biology reveals that mosquito genetic engineering may turn the transmitter into a natural 'flying vaccinator', providing a new strategy for biological control over the disease.

The research, led by Associate Professor Shigeto Yoshida from the Jichi Medical University in Japan, targets the saliva gland of the Anopheles stephensi , the main vectors of human malaria.

"Blood-sucking arthropods including mosquitoes, sand flies and ticks transmit numerous infectious agents during blood feeding," said Yoshida. "This includes malaria, which kills between 1-2 million people, mostly African children, a year. The lack of an effective vaccine means control of the carrier has become a crucial objective to combating the disease."

For the past decade it has been theorized that of the mosquito could create a 'flying vaccinator,' raising hopes for their use as a new strategy for control. However so far research has been limited to a study of the insect's gut and the 'flying vaccinator' theory was not developed.

"Following bites, protective immune responses are induced, just like a conventional vaccination but with no pain and no cost," said Yoshida. "What's more continuous exposure to bites will maintain high levels of protective immunity, through natural boosting, for a life time. So the insect shifts from being a pest to being beneficial."

In this study Dr. Yoshida's team successfully generated a transgenic mosquito expressing the Leishmania vaccine within its saliva. Bites from the insect succeeded in raising , indicating successful immunization with the Leishmania vaccine through blood feeding.

While 'flying vaccinator' theory may now be scientifically possible the question of ethics hangs over the application of the research. A natural and uncontrolled method of delivering vaccines, without dealing with dosage and consent, alongside public acceptance to the release of 'vaccinating' mosquitoes, provide barriers to this method of disease control.

"For the past decade it has been postulated that the salivary gland could be the way to gain biological control over this important infectious disease," concluded Yoshida. "In this study we have shown, for the first time, the achievement of the original concept of the 'flying vaccinator."

Explore further: New research shows how pathogenic E. coli O157:H7 binds to fresh vegetables

More information: Yamamoto.D, Nagumo.H, Yoshida.S, “Flying vaccinator; a transgenic mosquito delivers a Leishmania vaccine via blood feeding,”, Insect Molecular Biology, March 2010, Wiley-Blackwell, DOI:10.1111/j.1365-2583.2010.01000.x

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Lifestyle determines gut microbes

12 hours ago

An international team of researchers has for the first time deciphered the intestinal bacteria of present-day hunter-gatherers.

Rethink education to fuel bioeconomy, says report

14 hours ago

Microbes can be highly efficient, versatile and sophisticated manufacturing tools, and have the potential to form the basis of a vibrant economic sector. In order to take full advantage of the opportunity microbial-based ...

User comments : 0

More news stories

Low Vitamin D may not be a culprit in menopause symptoms

A new study from the Women's Health Initiative (WHI) shows no significant connection between vitamin D levels and menopause symptoms. The study was published online today in Menopause, the journal of The North American Menopa ...

Astronomers: 'Tilt-a-worlds' could harbor life

A fluctuating tilt in a planet's orbit does not preclude the possibility of life, according to new research by astronomers at the University of Washington, Utah's Weber State University and NASA. In fact, ...