New advances vastly expand versatility of optogenetics brain-research technique

Mar 18, 2010

Recently, brain researchers have gained a powerful new way to troubleshoot neural circuits associated with depression, Parkinson's disease and other conditions in small animals such as rats. They use an optogenetics technology, invented at Stanford University, that precisely turns select brain cells on or off with flashes of light. Although useful, the optogenetics tool set has been limited.

In a paper to be published in the April 2 edition of Cell, the Stanford researchers describe major advances that will enable a much wider range of experiments in larger animals.

The new capabilities include ways to use any visible color of light (instead of just a few) to control , and ways to make cells susceptible to the optogenetics technique even if they cannot be genetically engineered directly. To date, optogenetics worked by using a specially engineered virus to insert into cells so that they would make light-sensitive proteins. It hasn't been possible to do that for every cell in every creature scientists want to study with the technique.

"These advances demonstrate a systematic way to add more instruments to the optogenetic orchestra," said Karl Deisseroth, MD, PhD, associate professor of and of psychiatry and behavioral sciences, and senior author of the paper. "Instead of trying to play a symphony with just an oboe and a drum, we now have a well-defined path to collect many more instruments with which we can play the music."

One of the most important new "instruments" is the ability to use light bordering on to suppress cell activity. Those wavelengths penetrate much deeper in living tissue, meaning that cells can be turned off in a larger area of the brain. This is crucial both for producing more widespread and stronger effects in small animals, and for producing meaningful effects in larger animals, such as primates. Light at the infrared border can also deliver less energy to tissue than can the higher wavelengths, which may make it especially safe.

Meanwhile, being able to use any color to control cells also opens the door to performing more complex experiments, because more colors of light could be used at the same time. It would now be possible, for example, for a researcher to use a blue light to activate one kind of cell, and a far-red light to shut off another kind, and study the effect of that combination. In the past, optogenetics was limited to the use of blue and yellow light.

The other key advance is the ability to harness intracellular "trafficking" to spread the optogenetic effect throughout a brain circuit without needing a detailed knowledge of the genetic makeup of every cell involved. Instead, the optogenetic effect can be shared among cells based simply on their connection. Genetically modifying some cells is still necessary, but now it is easier to modify others in a circuit because, with the new method, their mere connection to altered cells via the circuit will modify them as well.

Deisseroth likens cellular trafficking to a postal system, in which cells move proteins and other molecules around internally and between each other. Optogenetics genes are derived from microbial cells, which use a different method of "addressing" than do mammalian cells. By adapting the optogenetics genes to be compatible with the mammalian addressing system, Deisseroth's team enabled mammalian cells to "traffic" optogenetics genes to the correct location within cells.

The new genes Deisseroth's team developed, both for employing new colors of light and for spreading via trafficking, are already available to other researchers. "In fact there has been a very high demand already from the community," he said.

Like optogenetic effects in brain tissue, the means to study neural circuits using optogenetics are spreading through a network of academic and institutional researchers connected by the desire to make new discoveries that benefit human health.

Explore further: US scientists make embryonic stem cells from adult skin

Related Stories

Shedding some light on Parkinson's treatment

Apr 16, 2009

A research team lead by Karl Deisseroth in the bioengineering department at Stanford University has developed a technique to systematically characterize disease circuits in the brain. By precisely controlling ...

Brain works best when cells keep right rhythms

Apr 26, 2009

It is said that each of us marches to the beat of a different drum, but new Stanford University research suggests that brain cells need to follow specific rhythms that must be kept for proper brain functioning. These rhythms ...

Recommended for you

Leeches help save woman's ear after pit bull mauling

Apr 18, 2014

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

New pain relief targets discovered

Apr 17, 2014

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

User comments : 0

More news stories

Cancer stem cells linked to drug resistance

Most drugs used to treat lung, breast and pancreatic cancers also promote drug-resistance and ultimately spur tumor growth. Researchers at the University of California, San Diego School of Medicine have discovered ...

Poll: Big Bang a big question for most Americans

Few Americans question that smoking causes cancer. But they have more skepticism than confidence in global warming, the age of the Earth and evolution and have the most trouble believing a Big Bang created the universe 13.8 ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.