Bird Bones May be Hollow, But They are Also Heavy, Biologist Says

Mar 17, 2010
Bird Bones May be Hollow, But They are Also Heavy, Says UMass Amherst Biologist

(PhysOrg.com) -- For centuries biologists have known that bird bones are hollow, and even elementary school children know that bird skeletons are lightweight to offset the high energy cost of flying. Nevertheless, many people are surprised to learn that bird skeletons do not actually weigh any less than the skeletons of similarly sized mammals. In other words, the skeleton of a two-ounce songbird weighs just as much as the skeleton of a two-ounce rodent.

Bird biologists have known this for a long time, but it took a modern bat researcher, Elizabeth Dumont of the University of Massachusetts Amherst, to explain how bird skeletons can look so delicate and still be heavy. The answer is that bird bones are denser than mammal bones, which makes them heavy even though they are thin and sometimes even hollow.

Her findings, supported by bone density measurements, are published in the March 17 issue of . As Dumont explains, “The fact that bird bones are denser than bones in mammals not only makes them heavier for their size, but it may also make them stiffer and stronger. This is a new way to think about how bird skeletons are specialized for flying and solves the riddle of why bird skeletons appear so lightweight and are still relatively heavy. This has never been explained fully and so has never gotten into the textbooks. I’d like to see that change.”

Dumont measured the density of the cranium, the upper arm bone or humerus and the thigh or femur bones in song birds, rodents and bats by measuring and volume. “I found that, on average, these bones are densest in birds, followed closely by bats. Many other studies have shown that as bone density increases, so do bone stiffness and strength. Maximizing stiffness and strength relative to weight are optimization strategies that are used in the design of strong and stiff but lightweight man-made airframes,” she points out. Density is a measure of mass per unit of volume; dense bones are both heavier and stronger, much as a titanium toothpick would be stronger than a wooden one.

Over time bird bones have evolved specializations that maximize stiffness and strength, Dumont says. These specializations include high , a reduction in the total number of bones, fusion of some bones, and changes in bone shape. For example, a long history of studies have shown that the main bone in the bird wing, the humerus, is quite round in cross-section. This makes it stiffer in the same way that a round toothpick is harder to snap than a flat one.

Galileo described bird bones as lightweight in 1683, Dumont says. Her new data help to dispel the common misconception that bird skeletons are lightweight relative to body mass. Instead, bird and bat skeletons only appear to be slender and delicate—because they are dense, they are also heavy. Being dense, strong and stiff is one more way that birds’ and bats’ bones are specialized for flight.

Explore further: Research helps steer mites from bees

Related Stories

'Terror bird' remains found in Argentina

Oct 26, 2006

A fossil found in Argentina of a large carnivorous bird capable of eating dog-sized mammals challenges traditional thoughts on how birds evolved.

The way of the digital dodo

Feb 20, 2009

(PhysOrg.com) -- The laser light glowed brilliant red, forming a moving line as it bounced information from the dodo’s bones back into the high-tech scanner sitting on a tripod on the Museum of Comparative ...

Size zero is bad news for bones

Jan 05, 2010

(PhysOrg.com) -- New research from the Children of the 90s project suggests that teenage girls who are too thin may be putting their bones at risk.

Scavenger birds chew the fat

Sep 08, 2008

Humans aren't the only ones who like fatty foods - bearded vultures do, too. A study by Antoni Margalida from the Bearded Vulture Study and Protection Group in El Pont de Suert, Spain, has found that the bearded vulture will ...

Scientists reveal how tendons shape developing bones

Jan 14, 2010

Bones, muscles and tendons work together to provide the perfect balance between stability and movement in the skeleton. Now, Weizmann Institute scientists show that this partnership begins in the embryo, when the bones are ...

Recommended for you

Research helps steer mites from bees

Sep 19, 2014

A Simon Fraser University chemistry professor has found a way to sway mites from their damaging effects on bees that care and feed the all-important queen bee.

Bird brains more precise than humans'

Sep 19, 2014

(Phys.org) —Birds have been found to display superior judgement of their body width compared to humans, in research to help design autonomous aircraft navigation systems.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

skepticgriggsygriggs
not rated yet Mar 18, 2010
I like the way their lungs work.