Light twists rigid structures in unexpected nanotech finding

Mar 17, 2010
After 72 hours of exposure to ambient light, strands of nanoparticles twisted and bunched together. Credit: Nicholas Kotov

(PhysOrg.com) -- In findings that took the experimenters three years to believe, University of Michigan engineers and their collaborators have demonstrated that light itself can twist ribbons of nanoparticles.

The results are published in the current edition of Science.

Matter readily bends and twists light. That's the mechanism behind optical lenses and polarizing 3-D movie glasses. But the opposite interaction has rarely been observed, said Nicholas Kotov, principal investigator on the project. Kotov is a professor in the departments of Chemical Engineering, Biomedical Engineering and Materials Science and Engineering.

While light has been known to affect matter on the molecular scale---bending or twisting molecules a few in size---it has not been observed causing such drastic mechanical twisting to larger particles. The nanoparticle in this study were between one and four micrometers long. A micrometer is one-millionth of a meter.

"I didn't believe it at the beginning," Kotov said. "To be honest, it took us three and a half years to really figure out how photons of light can lead to such a remarkable change in rigid structures a thousand times bigger than molecules."

Kotov and his colleagues had set out in this study to create "superchiral" particles---spirals of nano-scale mixed metals that could theoretically focus visible light to specks smaller than its wavelength. Materials with this unique "negative refractive index" could be capable of producing Klingon-like invisibility cloaks, said Sharon Glotzer, a professor in the departments of Chemical Engineering and Materials Science and Engineering who was also involved in the experiments. The twisted nanoparticle ribbons are likely to lead to the superchiral materials, the professors say.

To begin the experiment, the researchers dispersed nanoparticles of cadmium telluride in a water-based solution. They checked on them intermittently with powerful microscopes. After about 24 hours under light, the nanoparticles had assembled themselves into flat ribbons. After 72 hours, they had twisted and bunched together in the process.

But when the nanoparticles were left in the dark, distinct, long, straight ribbons formed.

"We discovered that if we make flat ribbons in the dark and then illuminate them, we see a gradual twisting, twisting that increases as we shine more light," Kotov said. "This is very unusual in many ways."

The light twists the ribbons by causing a stronger repulsion between nanoparticles in them.

The twisted ribbon is a new shape in nanotechnology, Kotov said. Besides superchiral materials, he envisions clever applications for the shape and the technique used to create I it. Sudhanshu Srivastava, a postdoctoral researcher in his lab, is trying to make the spirals rotate.

"He's making very small propellers to move through fluid---nanoscale submarines, if you will," Kotov said. "You often see this motif of twisted structures in mobility organs of bacteria and cells."

The nanoscale submarines could conceivably be used for drug-delivery and in microfluidic systems that mimic the body for experiments.

This newly-discovered twisting effect could also lead to microelectromechanical systems that are controlled by . And it could be utilized in lithography, or microchip production.

Glotzer and Aaron Santos, a postdoctoral researcher in her lab, performed computer simulations that helped Kotov and his team better understand how the ribbons form. The simulations showed that under certain circumstances, the complex combination of forces between the tetrahedrally-shaped nanoparticles could conspire to produce ribbons of just the width observed in the experiments. A tetrahedron is a pyramid-shaped, three-dimensional polyhedron.

"The precise balance of forces leading to the self-assembly of ribbons is very revealing," Glotzer said. "It could be used to stabilize other nanostructures made of non-spherical particles. It's all about how the particles want to pack themselves."

Explore further: A crystal wedding in the nanocosmos

More information: The paper is titled 'Light-Controlled Self-Assembly of Semiconductor Nanoparticles into Twisted Ribbons.'

Related Stories

New Self-Assemble Building Blocks for Nanotechnology

Aug 19, 2004

University of Michigan researchers have discovered a way to self-assemble nanoparticles into wires, sheets, shells and other unusual structures using sticky patches that make the particles group themselves together in progra ...

Unzipping Carbon Nanotubes Can Make Graphene Ribbons

Apr 20, 2009

(PhysOrg.com) -- By "unzipping" carbon nanotubes, researchers have shown how to make flat graphene ribbons. Graphene, which is a one-atom-thick sheet of carbon that looks like chicken wire, has unique electrical ...

U-M team makes synthetic mother of pearl

Mar 17, 2005

It's possible to grow thin films of mother of pearl in the laboratory that are even stronger than the super-strong material that naturally lines the inside of abalone shells. The trick is to add compounds normally found in ...

Gold nanoparticles for controlled drug delivery

Dec 30, 2008

(PhysOrg.com) -- Using tiny gold particles and infrared light, MIT researchers have developed a drug-delivery system that allows multiple drugs to be released in a controlled fashion.

Recommended for you

A crystal wedding in the nanocosmos

12 hours ago

Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), the Vienna University of Technology and the Maria Curie-Skłodowska University Lublin have succeeded in embedding nearly perfect semiconductor ...

PPPL studies plasma's role in synthesizing nanoparticles

Jul 22, 2014

DOE's Princeton Plasma Physics Laboratory (PPPL) has received some $4.3 million of DOE Office of Science funding, over three years, to develop an increased understanding of the role of plasma in the synthesis ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

lbuz
not rated yet Mar 18, 2010
In my opinion, this could be a highly significant discovery (a keen grasp of the obvious here?). Given the self-assembly as described, it would seem relatively straightforward to scale this up to industrial quantities. Macro-scale "nano-cables" and fabric woven from them should have remarkable mechanical properties quite apart from the possible invisibility alluded to above. This is Star Trek level juju here.
Nattydread
not rated yet Mar 18, 2010
"The light twists the ribbons by causing a stronger repulsion between nanoparticles in them."

surely the light twists the fibres because photons carry angular momentum and are imparting it to the atoms.
tpq
not rated yet Mar 18, 2010
A very nice discovery. Could it be however, that the light is changing the liquid they are in (ionization or oxidation?)and the newly created species interact with the material, enabling hydrogen bonding or other weak forces to cause the formation of the strands?

If indeed real, the implications would be quite phenomenal, to implement this at the macroscopic scale to create intelligent materials that respond to light. A very down to earth application would be to use it for solar panels that turn towards the sun without motors.
KBK
not rated yet Mar 18, 2010
DNA interacts with light and emits light. This, from The US Naval Academy of Research.

All these 'reactions' and 'actions' (involving light)... of the DNA....are positive ones. Highly empowering information, it be. The research also suggests and actually says - much more. Repeating it will result in simple disbelief, without the supporting structure of much more research required to understand.

Be active in your research,and open. Then you will find the really and greatly thought provoking stuff.