Disabling Skp2 gene helps shut down cancer growth

Mar 17, 2010

Increased understanding of the Skp2 gene and its relation to cellular senescence may lead to the development of novel agents that can suppress tumor development in common types of cancer, researchers from The University of Texas M. D. Anderson Cancer Center and Memorial Sloan-Kettering Cancer Center report in the journal Nature.

Skp2 is involved in promoting cell cycle regulation, , cell growth and the formation of tumors, and it is overexpressed in a variety of human cancers, according to lead author Hui-Kuan Lin, Ph.D., an assistant professor in M. D. Anderson's Department of Molecular and Cellular Oncology.

Lin and colleagues found that inactivating Skp2 after oncogenes are overexpressed stifles by causing senescence - the irreversible loss of a cell's ability to divide and grow. Harnessing the power of cellular senescence to push rapidly dividing cells into a dormant state might provide another way to prevent or control common malignancies like prostate .

Experiments Yield Surprising Results

The researchers conducted a series of experiments in tumor cell lines and mouse models that have shed new light on the interplay of Skp2 and cellular senescence.

"We discovered that Skp2 actually exhibits oncogenic activity, which is required for in multiple tumor models, such as the Pten-deficient and the p19Arf -deficient mouse models," Lin said. "We found that Skp2 regulates tumorigenesis to trigger the cellular senescence program. This program is unexpectedly independent of the p19Arf-p53 pathway, which was previously believed to be critical for cellular senescence."

The researchers also found that induction of cellular senescence did not cause DNA damage, and their results suggest that Skp2 inactivation can suppress cellular transformation to cancer even in the setting of an impaired p19Arf-p53 senescence response.

Moreover, research conducted in mouse models with faulty or inactive tumor suppressor networks showed that Skp2 deficiency and oncogenic signaling elicit a senescence response that restricts formation of tumors.

Novel Findings Point to New Therapeutic Approaches

Lin said these studies suggest that in the future Skp2 might be an effective therapeutic target for tumors with deregulated Akt signaling due to the loss or inactivation of Pten functions. Pten, which is commonly lost in human cancers, acts as a tumor suppressor gene by suppressing Akt signaling. Skp2 and Pten loss are believed to cooperate in triggering cellular senescence to restrict invasive prostate cancer.

"We now want to examine whether Skp2 is required in other tumor model systems, such as a HER2 model, to determine whether it is globally required for an oncogenic event," said Lin, who previously was affiliated with Memorial Sloan-Kettering Cancer Center's Department of Pathology and Cancer Biology and Genetics program and continued his research at M. D. Anderson. "We are testing whether Skp2 might be widely used for different types of cancer or perhaps used to trigger this newly described program."

The researchers also are working to develop a Skp2-specific small molecule inhibitor to establish that the protein is indeed an important therapeutic target in cancer treatment. They believe that Skp2-based therapy might also be used as a general cancer treatment that could be combined with existing cancer therapies.

Explore further: Study reveals one reason brain tumors are more common in men

Related Stories

Enhancing arrest of cell growth to treat cancer in mice

Feb 08, 2010

A team of researchers, led by Pier Paolo Pandolfi, at Beth Israel Deaconess Medical Center, Boston, has identified a new type of cellular senescence (i.e., irreversible arrest of cell growth) and determined a way to enhance ...

Preventing cancer without killing cells

Mar 30, 2007

Inducing senescence in aged cells may be sufficient to guard against spontaneous cancer development, according to a paper published online this week in EMBO reports. It was previously unknown whether cellular senescence or ...

Gene helps protect tumor suppressor in breast cancer

Apr 06, 2009

Scientists at The University of Texas M. D. Anderson Cancer Center have discovered a gene that protects PTEN, a major tumor-suppressor that is reduced but rarely mutated in about half of all breast cancers.

Preventing prostate cancer the complex way

Feb 03, 2009

(PhysOrg.com) -- Blocking a specific protein complex prevents the formation of tumors in mice genetically predisposed to develop prostate cancer, researchers at the Whitehead Institute for Biomedical Research ...

Recommended for you

Clues to curbing obesity found in neuronal 'sweet spot'

10 hours ago

Preventing weight gain, obesity, and ultimately diabetes could be as simple as keeping a nuclear receptor from being activated in a small part of the brain, according to a new study by Yale School of Medicine ...

Small RNAs in blood may reveal heart injury

20 hours ago

(Medical Xpress)—Like clues to a crime, specific molecules in the body can hint at exposure to toxins, infectious agents or even trauma, and so help doctors determine whether and how to treat a patient. ...

User comments : 0