Quantum dots spotlight DNA-repair proteins in motion

Mar 11, 2010

Repair proteins appear to efficiently scan the genome for errors by jumping like fleas between DNA molecules, sliding along the strands, and perhaps pausing at suspicious spots, say researchers at the University of Pittsburgh, the University of Essex and the University of Vermont who tagged the proteins with quantum dots to watch the action unfold. The findings are available today in Molecular Cell.

Everyone is constantly bombarded with that inflict small errors in the DNA code, so a rapid repair system is essential to maintain the integrity of the sequences for proper cell function, explained senior author Bennett Van Houten, Ph.D., Richard M. Cyert Professor of Molecular Oncology and leader, molecular and cellular cancer biology program, University of Pittsburgh Cancer Institute (UPCI), and professor, Department of Pharmacology and , University of Pittsburgh School of Medicine.

"How this system works is an important unanswered question in this field," he said. "It has to be able to identify very small mistakes in a 3-dimensional morass of gene strands. It's akin to spotting potholes on every street all over the country and getting them fixed before the next rush hour."

The researchers sought to unravel the mystery by tagging two repair proteins, called UvrA and UvrB, with , which are semi-conductor nanocrystals that light up in different colors. They also stretched the usually clumped DNA into multiple "tightropes" to see the process more clearly.

They watched while UvrA proteins randomly jumped from one to the next, holding on to one spot for about seven seconds before hopping to another site. But when UvrA formed a complex with two UvrB molecules (UvrAB), a new and more efficient search technique emerged: the complex slid along the DNA tightrope for as long as 40 seconds before detaching itself and jumping to another molecule.

"If an E.coli bacterium had only one UvrAB complex, 13 hours would elapse before the entire genome was scanned for errors," said lead researcher Neil M. Kad, Ph.D., Department of Biological Sciences, University of Essex, United Kingdom. "About 40 complexes, comparable to the estimates of what occurs naturally, would be needed to scan it within the bacterium's 20-minute doubling time."

In addition to random jumping and sliding, the researchers also observed what they called "paused motion," in which UvrAB's motion seemed slower and purposeful.

"About one-third of the motile molecules in our study behaved this way," said co-author David M. Warshaw, Ph.D., professor and chair, Department of Molecular Physiology and Biophysics, University of Vermont. "Paused motion could represent UvrAB complexes checking for structural abnormalities associated with DNA damage."

The researchers now are exploring the possibility that the complexes sample the shape or chemical configuration of DNA by interacting with it; an error could alter the local structure, changing its handshake with the repair proteins and perhaps triggering a corrective response.

Explore further: Researchers discover new strategy germs use to invade cells

Provided by University of Pittsburgh

5 /5 (1 vote)

Related Stories

Real-time observation of the DNA-repair mechanism

May 22, 2008

For the first time, researchers at Delft University of Technology have witnessed the spontaneous repair of damage to DNA molecules in real time. They observed this at the level of a single DNA molecule. Insight into this ...

Study: Cells prevent DNA repair

Nov 23, 2005

Scientists say they've discovered cells co-opt the machinery that usually repairs broken strands of DNA to protect the integrity of chromosomes.

Chromatin remodeling complex connected to DNA damage control

Aug 09, 2007

When molecular disaster strikes, causing structural damage to DNA, players in two important pathways talk to each other to help contain the wreckage, scientists at The University of Texas M. D. Anderson Cancer Center report ...

Recommended for you

Researchers discover new strategy germs use to invade cells

Aug 20, 2014

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

Aug 20, 2014

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

Aug 19, 2014

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

User comments : 0