Molecule tells key brain cells to grow up, get to work: study

Mar 10, 2010

About four out of every 10 cells in the brain are so-called oligodendrocytes. These cells produce the all-important myelin that coats nerve tracts, ensuring fast, energy-efficient transmission of nerve impulses. Mixed among them are proliferating but not particularly proficient precursor cells that are destined to become oligodendrocytes when needed but, for now, remain suspended in an immature, relatively undifferentiated state somewhere between stem cell and adult oligodendrocyte.

Stanford University School of Medicine scientists have now identified a molecular master switch that catalyzes these cells' transition to mature, myelin-making mavens. The results may have implications for medical treatment, as defects in this maturation process have been observed in both multiple sclerosis and the most common kind of cancers in adults, known as gliomas.

In a study to be published March 10 in Neuron, the investigators found that a molecule known as miR-219 is found at high levels only in oligodendrocytes, and that it is both necessary and sufficient to induce their relatively undifferentiated precursors to become functioning adult cells.

"The mechanism responsible for this shifting of anatomical and behavioral gears from precursor to fully functioning oligodendrocyte was a mystery," said Ben Barres, MD, PhD, professor and chair of neurobiology and the study's senior author. "Finding this switch has allowed us to ferret out several of the molecules it acts on inside cells. And that in turn could open the door to new approaches to treating diseases where oligodendrocyte precursors' failure to mature appropriately plays a role."

A more general question that has puzzled biologists is how cells in one state switch seamlessly to another state. Such a shift implies switching on and off entire banks of genes whose protein products determine a cell's shape, activity and contribution — beneficial or otherwise — to our overall health. The study's results may help to piece that puzzle together.

The specific molecule, miR-219, shown to play a key role in initiating oligodendrocytes' precursor-to-adult transition belongs to a class of molecules known as microRNAs.

RNA molecules are normally thought of as messengers that convey instructions from DNA in the nucleus of animal and plant cells to the surrounding watery zone inside the cell. There, molecular machines that can "read" the messenger RNA's nucleic-acid sequences assemble proteins according to its dictates.

Unlike messenger RNA, microRNA molecules are very short strings of RNA that don't contain instructions for making proteins. While a messenger RNA molecule has to be fairly lengthy to hold all the information necessary for generating a complete protein, a microRNA molecule plays a different role entirely, as Andrew Fire, PhD, Stanford professor of pathology and of genetics and winner of the 2006 Nobel Prize in medicine, discovered.

In the same way that two DNA strands are famously able to form a coordinated double strand when the shapes of the two strands' constituent nucleic-acid sequences are complementary, a microRNA molecule can bind to messenger RNAs when those messenger RNAs' sequences complement its own. The result is that the messenger RNA's sequence can no longer be read by the cell's protein-manufacturing apparatus, gumming up assembly of the protein it encodes. The binding of microRNA to messenger RNA can even trigger the destruction of the bound complex, setting back the protein-production schedule all the more.

Interestingly, not every bit of a microRNA molecule's sequence has to match its opposite number on a messenger RNA molecule in order for the two to bind. Instead, pairing relies on the recognition of an ultra-short "seed" sequence within the microRNA molecule. "So a single microRNA can affect the activity levels of hundreds of different messenger RNAs," said the study' first author, Jason Dugas, PhD, a research associate in Barres' laboratory.

The study included a collaboration with the lab of Michael McManus, PhD, at the Diabetes Center of the University of California-San Francisco. McManus had generated a customized technique that could measure the relative abundance of different microRNA species in a cell extract.

Meanwhile, the Barres lab is acknowledged worldwide for its prowess in the study of certain types of brain cells. It was Barres who in the 1990s — as a postdoctoral researcher in the Harvard lab of Martin Raff, MDCM, who discovered oligodendrocyte — figured out how to refine these precursors to complete purity, keep them alive in a defined culture medium and get them to differentiate into mature oligodendrocytes.

In this latest series of experiments, Dugas, Barres and their colleagues showed that impairing all microRNA production in cells fated to become oligodendrocytes produced both behavioral defects in live laboratory mice and clear anatomical defects (lack of proper myelination) in brain slices from these mice. Precursor cells cultured in a dish failed to undergo the conversion to adulthood normally triggered by withdrawal of a growth factor, which stimulates precursor cells' proliferation, from the culture medium.

Then, the scientists induced the oligodendrocyte precursor-to-adult transition in normal cells and, using the McManus lab's technology, checked for microRNAs whose levels changed greatly. The amount of one particular microRNA, miR-219, increased by 100-fold at this juncture, Dugas said. That finding has been confirmed in another laboratory that will also publish soon on this subject, Dugas and Barres said.

Staining of brain sections revealed that miR-219 is largely restricted to the brain's white matter — that is, its myelinated regions — making it an excellent biomarker for oligodendrocytes. The researchers also found that delivering a synthetic analog of miR-219 to oligodendrocyte precursor cells deficient in all microRNA generation — and therefore incapable of maturing to myelin-producing oligodendrocytes — partially rescued those cells' ability to mature. Moreover, knocking out only miR-219 function in the oligodendrocyte-fated precursor cells once again prevented them from maturing normally. Adding miR-219 to normal oligodendrocyte precursors in culture, without inducing their differentiation by standard growth-factor withdrawal, increased up to fourfold their likelihood of converting to adulthood.

Finally, the investigators were able to identify several distinct messenger RNAs that were inhibited by miR-219. These messenger RNAs encode proteins that both maintain precursors' proliferative potential and prevent them from becoming full-fledged oligodendrocytes.

"In addition to potential importance for stimulating remyelination in multiple sclerosis, we're especially excited about our findings' potential significance for glioma, the most common adult brain tumor," Barres said. "There hasn't been any really good treatment for these tumors, in which precursor cells start dividing and dividing and don't differentiate. Why are these cells behaving so abnormally? Maybe this microRNA switch has been downregulated or shut down entirely. Perhaps by introducing miR-219 back into cells, we may actually be able to stop them from behaving like tumor cells." Barres said his lab has entered into a collaboration with another group to test this idea.

Explore further: Know the brain, and its axons, by the clothes they wear

Related Stories

Common cancer gene sends death order to tiny killer

May 31, 2007

Scientists at Johns Hopkins have discovered one way the p53 gene does what it's known for—stopping the colon cancer cells. Their report will be published in the June 8 issue of Molecular Cell.

Scientists discover new role for miRNA in leukemia

Dec 10, 2007

Scientists here have found that mini-molecules called micro-RNA may play a critical role in the progression of chronic myeloid leukemia (CML) from its more treatable chronic phase to a life-threatening phase, called blast ...

Study links molecule to muscle maturation, muscle cancer

Dec 30, 2008

Researchers at The Ohio State University Comprehensive Cancer Center have discovered that a molecule implicated in leukemia and lung cancer is also important in muscle repair and in a muscle cancer that strikes ...

Mechanism of microRNAs deciphered

May 16, 2007

Over 30% of our genes are under the control of small molecules called microRNAs. They prevent specific genes from being turned into protein and regulate many crucial processes like cell division and development, but how they ...

Small molecule may help pinpoint some cancers

Mar 09, 2005

In recent years, scientists have begun to catalog an astonishing array of small, distinct genetic elements that seem to play an important role in how genes function. Known as microRNAs for their Lilliputian dimensions - j ...

Recommended for you

Know the brain, and its axons, by the clothes they wear

Apr 18, 2014

(Medical Xpress)—It is widely know that the grey matter of the brain is grey because it is dense with cell bodies and capillaries. The white matter is almost entirely composed of lipid-based myelin, but ...

Turning off depression in the brain

Apr 17, 2014

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Rapid whole-brain imaging with single cell resolution

Apr 17, 2014

A major challenge of systems biology is understanding how phenomena at the cellular scale correlate with activity at the organism level. A concerted effort has been made especially in the brain, as scientists are aiming to ...

User comments : 0

More news stories

Less-schooled whites lose longevity, study finds

Barbara Gentry slowly shifts her heavy frame out of a chair and uses a walker to move the dozen feet to a chair not far from the pool table at the Buford Senior Center. Her hair is white and a cough sometimes interrupts her ...

Cancer stem cells linked to drug resistance

Most drugs used to treat lung, breast and pancreatic cancers also promote drug-resistance and ultimately spur tumor growth. Researchers at the University of California, San Diego School of Medicine have discovered ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.