Seafarers' scourge provides hope for biofuel future

Mar 08, 2010
Here is a close-up of the gribble. Credit: Dr. Simon Cragg/Graham Malyon -- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, UK

For centuries, seafarers were plagued by wood-eating gribble that destroyed their ships, and these creatures continue to wreak damage on wooden piers and docks in coastal communities.

But new research by scientists at the BBSRC Sustainable Bioenergy Centre at the Universities of York and Portsmouth is uncovering how the tiny marine isopod digests the apparently indigestible.

By examining genes that are expressed in the guts of gribble, the researchers have demonstrated that its digestive system contains enzymes which could hold the key to converting wood and straw into liquid biofuels.

In research published today, a team headed by Professor Simon McQueen-Mason and Professor Neil Bruce at York, and Dr Simon Cragg at Portsmouth reveal that the gribble digestive tract is dominated by enzymes that attack the polymers that make up wood. One of the most abundant enzymes is a cellulose degrading never before seen in animals.

The research is published in the latest issue of the (PNAS).

This is a close-up of the gribble. Credit: Dr. Simon Cragg/Graham Malyon (Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, UK)

Unlike termites and other wood-eating animals, gribble have no helpful microbes in their digestive system. This means that they must possess all of the enzymes needed to convert wood into sugars themselves.

Professor McQueen-Mason, of the Centre for Novel Agricultural Products (CNAP) in the Department of Biology at York, said: "This may provide clues as to how this conversion could be performed in an industrial setting."

The scientists at York are now studying the enzymes to establish how they work, and whether they can be adapted to industrial applications. Perhaps one day soon seafarers will be sailing the seas on ships powered with biofuels produced with gribble enzymes.

Duncan Eggar, BBSRC Bioenergy Champion, said: "The world needs to quickly reduce its dependence on fossil fuels and sustainably produced bioenergy offers the potential to rapidly introduce liquid transport fuels into our current energy mix."

Explore further: Peripheral clocks don't need the brain's master clock to function correctly

More information: The paper ‘Molecular insight into lignocellulose digestion by a marine isopod in the absence of gut microbes’ is published in Proceedings of the National Academy of Sciences.

Provided by University of York

4.8 /5 (6 votes)

Related Stories

Sweet success for sustainable biofuel research

Jan 25, 2010

Scientists have found a way to increase fermentable sugar stores in plants which could lead to plant biomass being easier to convert into eco-friendly sustainable biofuels. Their research is highlighted in the latest issue ...

Super-fermenting fungus genome sequenced

Mar 05, 2007

On the road to making biofuels more economically competitive with fossil fuels, there are significant potholes to negotiate. For cellulosic ethanol production, one major detour has being addressed with the characterization ...

Scientists create new enzymes for biofuel production

Mar 23, 2009

Researchers at the California Institute of Technology (Caltech) and world-leading gene-synthesis company DNA2.0 have taken an important step toward the development of a cost-efficient process to extract sugars ...

Recommended for you

Identifying the source of stem cells

23 hours ago

When most animals begin life, cells immediately begin accepting assignments to become a head, tail or a vital organ. However, mammals, including humans, are special. The cells of mammalian embryos get to ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.