Scientists narrow down origins of malaria

Mar 05, 2010
In the largest study of its kind, Escalante, a researcher in the Biodesign Institute’s new Center for Evolutionary Medicine and Informatics, along with colleagues from 15 leading international institutions, looked at the origins of Plasmodium falciparum, the protozoa species that causes the majority of human malaria cases.

(PhysOrg.com) -- From King Tut to Alexander the Great to Mother Theresa, the mosquito-borne illness malaria has long been a menace to human civilization. Now, an international team of scientists, including Arizona State University School of Life Sciences professor Ananias Escalante, has attempted to better understand this scourge by tracing it back to its earliest origins.

In the largest study of its kind, Escalante, a researcher in the Biodesign Institute’s new Center for Evolutionary Medicine and Informatics, along with colleagues from 15 leading international institutions, looked at the origins of , the protozoa species that causes the majority of human malaria cases. The team examined the root cause of malaria amongst populations of chimpanzees, our closest primate relative, because infectious agents often become opportunistic, and over time, can leap from from one species to another, with devastating consequences.

"This research is an example of our long-term goal: establishing bridges among the anthropological, epidemiological, ecological, and perspectives to address the origin and dynamic of infectious diseases," said Escalante.

By comparing the genetic sequences of the malaria culprit that infected two closely related wild chimpanzee species and bonobos, the team hoped to uncover the of malaria. They found high levels of infection in the wild chimps. Their data has also reshaped the current thinking on the animal origins of human malaria. Results suggest that P. falciparum did not originate from chimpanzees (Pan troglodytes), but rather evolved in bonobos (Pan paniscus), from which it jumped to humans. The malaria infections found in bonobos do not seem cause any harm or illness to the animals.

“This is a very important study, because species origins of human diseases are critical to deciphering factors, genetic and social, that make such transfers possible,” said Sudhir Kumar, director of the Center for Evolutionary Medicine and Informatics. Disease origins is a major research theme in this Biodesign center, and professor Escalante leads research and development efforts in this area.

"The finding of a number of “falciparum”-like species raises important and addressable questions about the mechanisms involved in the success of P. falciparum as a human parasite that may well be applicable to disease control," Escalante said.

Armed with new information, the team hopes to use this knowledge in the current battle to control . With a detailed knowledge of the genetic underpinnings of this illness, that team may help to identify the genes responsible for eluding the human immune system or guide the development of new treatment strategies for this global threat to human health.

The study appears in the journal PLoS Pathogens.

Explore further: Mystery of the reverse-wired eyeball solved

More information: www.plospathogens.org/article

Related Stories

Recommended for you

Mystery of the reverse-wired eyeball solved

3 hours ago

From a practical standpoint, the wiring of the human eye - a product of our evolutionary baggage - doesn't make a lot of sense. In vertebrates, photoreceptors are located behind the neurons in the back of the eye - resulting ...

Neurons controlling appetite made from skin cells

3 hours ago

Researchers have for the first time successfully converted adult human skin cells into neurons of the type that regulate appetite, providing a patient-specific model for studying the neurophysiology of weight ...

Quality control for adult stem cell treatment

6 hours ago

A team of European researchers has devised a strategy to ensure that adult epidermal stem cells are safe before they are used as treatments for patients. The approach involves a clonal strategy where stem cells are collected ...

A gene for brain size only found in humans

8 hours ago

About 99 percent of human genes are shared with chimpanzees. Only the small remainder sets us apart. However, we have one important difference: The brain of humans is three times as big as the chimpanzee ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.