Loss of enzyme reduces neural activity in Angelman syndrome

Mar 04, 2010

Angelman Syndrome is a rare but serious genetic disorder that causes a constellation of developmental problems in affected children, including mental retardation, lack of speech, and in some cases, autism. Over a decade ago, researchers found that AS was caused by mutation in a single gene, but no one had been able to explain how this defect resulted in the debilitating neurological symptoms of the disease.

New work from Michael Greenberg, chair of the department of neurobiology at Harvard Medical School (HMS), provides insight into the mystery by showing that the lost enzyme, Ube3A, interacts with a key neuronal protein in order to control how environmental input shapes synaptic connections. In other words, loss of Ube3A interferes with the brain's ability to use environmental experience to fine-tune , which could explain the devastating developmental deficits that occur in AS. This suggests new targets for treating Angelman syndrome. Currently, doctors can manage some AS symptoms, but there is no treatment for the core features.

What's more, the Ube3A gene is also mutated in some cases of autism, raising the possibility that these findings may also explain some of the problems that occur in autism spectrum disorders, which are 100 times more common than AS.

"With this work, we've gone from a place where we could only imagine how Ube3A might work, to being able to think about possibilities for therapeutic intervention in a disorder where until very recently there was little that could be done," says Greenberg, Nathan Marsh Pusey professor of neurobiology at HMS.

These findings will be published in the March 5 issue of Cell.

During the first few years of life, is "rewired" by external stimuli . This tweaking of neuronal connections is critical to establish normal neurological function, and is thought to go awry in a number of developmental disorders that lead to mental retardation or other . The new work suggests that Ube3A is a key regulator in this process, and ties the loss of Ube3A to a specific change in synaptic function.

Under normal conditions, the Ube3A enzyme tags cellular proteins for destruction. Co-ead author Paul Greer, a postdoctoral fellow in Greenberg's lab identified the synaptic protein Arc as one of Ube3A's targets. Arc's primary function is to decrease neuronal signaling. However, with a mutated Ube3A, Arc accumulates to higher than normal levels, which causes an abnormal lowering of neuronal signaling, leading to impaired neuronal communication and synaptic development.

The Arc connection has revealed surprising links to other disorders, Greenberg says. In Fragile X syndrome, a major form of inherited , neurons also have an over-abundance of Arc protein. Although the excess Arc occurs through a different mechanism independent of Ube3A, the two diseases seem to converge on a common synaptic defect. That means new treatments now under study for Fragile X may someday be useful for Angelman Syndrome, Greenberg says.

The work may also suggest additional therapeutic targets for AS. As part of the study, the researchers identified several proteins regulated by Ube3A in addition to Arc, some of which might be involved in creating the complex features of AS. "It could be that affecting Arc levels may be useful for some of the symptoms of AS, while modulating other targets will be useful for others," Greer says. "We are hoping to identify many substrates upon which Ube3a is acting, and one can imagine doing targeted therapeutics on several of them."

Explore further: Research points to potential treatment strategy for Fragile X syndrome

More information: "The Angelman Syndrome-associated ubiquitin ligase Ube3A regulates synapse development by ubiquitinating Arc", Cell, March 5, 2010, Vol 140, No. 5

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

New pain relief targets discovered

6 hours ago

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

Building 'smart' cell-based therapies

7 hours ago

A Northwestern University synthetic biology team has created a new technology for modifying human cells to create programmable therapeutics that could travel the body and selectively target cancer and other ...

Proper stem cell function requires hydrogen sulfide

10 hours ago

Stem cells in bone marrow need to produce hydrogen sulfide in order to properly multiply and form bone tissue, according to a new study from the Center for Craniofacial Molecular Biology at the Herman Ostrow School of Dentistry ...

User comments : 0

More news stories

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...