A novel in vitro model for light-induced wound healing

Mar 04, 2010

Today, during the 39th Annual Meeting of the American Association for Dental Research, convening at the Walter E. Washington Convention Center in Washington, DC, lead researcher C. Millan (U.S. Army Dental Corps, Martinez, Georgia) will present a poster of a study titled "A Novel In Vitro Model for Light-Induced Wound Healing." Studies have suggested that exposure to minimal doses of blue-violet light (400-500 nm) elicits production of small amounts of reactive oxygen species (ROS), and contributes to increased mitochondrial activity and cell growth in epithelial cells. Many growth factor signaling pathways generate ROS.

In this study, Millan and other researchers involved in this study hypothesize that exposure to blue-violet light may enhance cell growth. To test this hypothesis, they developed a novel in-vitro model that allowed them to monitor the cellular responses to a single, small dose of light in .

Normal human epidermal keratinocytes (NHEK) and human gingival fibroblasts (HGF) were plated around cloning cylinders. At confluency, the cylinders were removed to create a wound. Cells were treated with a single 5 J/cm2 light dose delivered by a quartz-tungsten-halogen light source. Mitochondrial succinate dehydrogenase activity was measured via a standard MTT assay, and was assessed using DRAQ5 DNA dye. Conditioned media were collected at each time point and used in a growth factor antibody array (RayBio®) to compare the secretion products.

Growth factor array results showed that NHEK responded to blue light exposure by increasing secretion of several growth factors including insulin-like growth factor binding protein-1, amphiregulin, epidermal growth factor and fibroblast growth factor-b. Likewise, mitochondrial dehydrogenase activity and cell proliferation were enhanced in NHEK. In contrast, HGF did not respond to blue light exposure significantly in any of the parameters tested.

These results show that NHEK cells responded robustly to a single, small dose of light by increasing their mitochondrial activity, DNA synthesis, and production of growth factors. Together, these data suggest that blue light may be useful to enhance epithelial cell growth in a wound site.

Explore further: Kidney transplant drug halves the early risk of rejection and allows less toxic treatment

Provided by International & American Association for Dental Research

4 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

A mammalian clock protein responds directly to light

Jul 01, 2008

We all know that light effects the growth and development of plants, but what effect does light have on humans and animals? A new paper by Nathalie Hoang et al., published in PLoS Biology this week, explores this question by exa ...

Time (and PPAR-beta/delta) heals all wounds

Mar 23, 2009

Mammalian skin requires constant maintenance, but how do skin cells know when to proliferate and at what rate? In the March 23, 2009 issue of the Journal of Cell Biology, Nguan Soon Tan and colleagues reveal ...

Internal clock, external light regulate plant growth

Jul 09, 2007

Most plants and animals show changes in activity over a 24-hour cycle. Now, for the first time, researchers have shown how a plant combines signals from its internal clock with those from the environment to show a daily rhythm ...

Recommended for you

Burnout impacts transplant surgeons (w/ Video)

12 hours ago

Despite saving thousands of lives yearly, nearly half of organ transplant surgeons report a low sense of personal accomplishment and 40% feel emotionally exhausted, according to a new national study on transplant surgeon ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

deatopmg
1 / 5 (1) Mar 04, 2010
What about other energy levels and other wavelengths such as 365 nm, 390 nm, 405 nm, green, red, NIR (all available using LEDs)?