How the demons of dementia possess and damage brain cells

Mar 03, 2010
Pictured are amyloid-beta proteins (in red) possessing the healthy astrocytes. Credit: EPFL - LNDC

A study from EPFL's (Ecole Polytechnique Fédérale de Lausanne) Laboratory of Neuroenergetics and Cellular Dynamics in Lausanne Switzerland, published today in the Journal of Neuroscience, may lead to new forms of treatment following a better understanding of how Amyloid-Beta found in cerebral plaques, typically present in the brain of Alzheimer's patients, may lead to neurodegeneration. Researchers in Lausanne have studied how the functions of certain cells called astrocytes-which normally protect, repair, and transfer energy to neurons-are impaired when "possessed" by aggregated Amyloid-Beta.

Alzheimer's disease currently affects more than 26 million people worldwide and estimates of up to four times as many sufferers by 2050 has made studying its causes a top priority for neuroscientists.

While the exact mechanisms by which the formation of plaques occurs and how they cause neurodegeneration and is still a matter of debate in the scientific world, this study sheds a new light on how astrocytes may participate in the development of Alzheimer's disease. This new understanding of the interaction between Amyloid-Beta and astrocytes could lead to more effective therapies for Alzheimer's disease by trying to rescue astrocytic functions by deactivating the scavenger receptors.

The current study explores the causal relationship between the build-up of the Amyloid-Beta protein, associated with the formation of plaques, and the impairment of astrocyte's functions. Pierre Magistretti, director of the Brain Mind Institute and the Center for Psychiatric Neurosciences at CHUV/UNIL, and Igor Allaman, post doctoral fellow in Magistretti's lab, have succeeded in determining how built-up Amyloid-Beta infiltrates the astrocyte cells and alters their proper functioning, thus leading to the death of surrounding neurons. "To penetrate the astrocyte, the pathological protein goes through a 'scavenger' receptor." explains Igor Allaman. "Our study has shown that if we impair Amyloid-Beta build-up, or activation of this receptor, astrocytes continue to fulfill their normal neuroprotective functions even in the presence of the Amyloid-Beta."

Explore further: Healthy brain development balanced on edge of a cellular 'sword'

More information: Amyloid-Beta Aggregates Cause Alterations of Astrocytic Metabolic Phenotype: Impact on Neuronal Viability, Journal of Neuroscience, March 3, 2010, issue 9

Provided by Ecole Polytechnique Fédérale de Lausanne

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Researchers find new piece in Alzheimer's puzzle

Feb 25, 2009

Yale researchers have filled in a missing gap on the molecular road map of Alzheimer's disease. In the Feb. 26 issue of the journal Nature, the Yale team reports that cellular prion proteins trigger the process by which ...

Amyloid beta protein gets bum rap

Nov 09, 2009

While too much amyloid beta protein in the brain is linked to the development of Alzheimer's disease, not enough of the protein in healthy brains can cause learning problems and forgetfulness, Saint Louis University scientists ...

QBI neuroscientists make Alzheimer's disease advance

Jun 10, 2008

Queensland Brain Institute (QBI) neuroscientists at UQ have discovered a new way to reduce neuronal loss in the brain of a person with Alzheimer's disease. Memory loss in people with Alzheimer's disease can be attributed ...

Alzheimer's prevention role discovered for prions

Jul 03, 2007

A role for prion proteins, the much debated agents of mad cow disease and vCJD, has been identified. It appears that the normal prions produced by the body help to prevent the plaques that build up in the brain to cause Alzheimer’s ...

Anti-inflammatory drug blocks brain plaques

Jun 24, 2008

Brain destruction in Alzheimer's disease is caused by the build-up of a protein called amyloid beta in the brain, which triggers damaging inflammation and the destruction of nerve cells. Scientists had previously shown that ...

Recommended for you

'Microlesions' in epilepsy discovered by novel technique

Dec 16, 2014

Using an innovative technique combining genetic analysis and mathematical modeling with some basic sleuthing, researchers have identified previously undescribed microlesions in brain tissue from epileptic ...

Thumbs-up for mind-controlled robotic arm (w/ Video)

Dec 16, 2014

A paralysed woman who controlled a robotic arm using just her thoughts has taken another step towards restoring her natural movements by controlling the arm with a range of complex hand movements.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.