Targeting leukemia cell's gene 'addiction' presents new strategy for treatment

Mar 03, 2010

An international team of scientists studying acute forms of Leukaemia have identified a new drug target to inhibit the genes which are vital for the growth of diseased cells. The research, reported in EMBO Molecular Medicine, reveals how leukaemia cells become 'addicted' to genes, which if targeted could prevent diseased cells from developing.

The team, led by Dr Veronika Sexl from the University of Vienna, carried out their research on acute lymphoid leukaemia (ALL) and leukaemia (CML), which can both be caused by fusion protein, Bcr-Abl, created through the joining of two or more genes originally coded for separate proteins.

This joining of genes results in a complex tumor supporting 'network' which supports the growth and survival of the leukaemic cells. Inhibitor drugs such as 'Imatinib' can block vital signals and lead to leukemia cell death, but there are several mutations which can resist these inhibitors, making them ineffective.

As an alternative strategy the team investigated Stat3 and Stat5 which are linked to bcr/abl-induced transformation. The team tested whether Stat3 and Stat5, acting downstream of Bcr-Abl are critical for leukaemia maintenance and if they could be a alternative target for treatment.

"We developed a tumour-specific gene-deletion approach to analyse the roles of Stat5 and Stat3 in Bcr/Abl-induced leukaemia growth," said Sexl. "We discovered that both factors are required for the development of Bcr-Abl, but once established only Stat5 is crucial for the survival and growth of leukemic Cells."

Even mutated forms of bcr-abl, Leukaemia cells, which are resistant to inhibiting drugs such as Imatinib, are still dependent on Stat5.

" undergo extensive adaptations in their signalling and metabolic pathways, thereby becoming dependent on certain genes," said Sexl. "In fact the activity of these genes can become limiting for a cancer cell."

The term 'Non-oncogene addication' (NOA) has been coined to describe this phenomenon of gene dependency and inhibiting these critical within the signalling network is predicted to cause system failure and halt the growth of leukaemia cells.

"In this study we demonstrated that bcr-abl, Leukaemia cells are addicted to Stat5 to maintain the leukameic state, concluded Sexl. "We've identified Stat5 as an Achilles' heel in the signalling network downstream of Bcr-Abl. Thus, inhibition of Stat5 may provide a novel therapeutic approach for treatment of ."

Explore further: Experts set strategic priorities for lymphoma research

add to favorites email to friend print save as pdf

Related Stories

Can cancer drugs combine forces?

Aug 16, 2007

Individuals with chronic myeloid leukemia (CML) are treated first with a drug known as imatinib (Gleevec), which targets the protein known to cause the cancer (BCR-ABL). If their disease returns, because BCR-ABL mutants emerge ...

Recommended for you

Experts set strategic priorities for lymphoma research

2 hours ago

A committee of lymphoma experts today unveiled a strategic roadmap identifying key priority areas in both infrastructure and research that will be critical for advancing treatments for people with lymphoma. The report is meant to inform future research directions as well as fund ...

Research aims to reduce health care disparities

2 hours ago

The lesbian, gay, bisexual, transgender/transsexual, queer/questioning and intersex (LGBTQI) population has been largely understudied by the medical community. Researchers at Moffitt Cancer Center found that the LGBTQI community ...

Promising drug target identified in medulloblastoma

3 hours ago

Scientists at Dana-Farber/Boston Children's Cancer and Blood Disorders Center have identified a protein critical to both the normal development of the brain and, in many cases, the development of medulloblastoma, a fast-growing ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.