NIST, NASA Launch Joint Effort to Develop New Climate Satellites

Mar 03, 2010
One of the three CLARREO satellites, which will make observations of the energy the Earth absorbs from the sun and radiates back into space. The balance between them affects the climate. Credit: NASA

The National Institute of Standards and Technology and the National Aeronautics and Space Administration (NASA) have launched a joint effort to gather enhanced climate data from spaceborne climate observation instruments planned for a group of satellites now under development.

The Climate Absolute Radiance and Refractivity Observatory (CLARREO) Mission includes a fleet of satellites tentatively scheduled for launch later this decade that will gather data for long-term climate projections. The CLARREO mission will provide an accurate climate record of the complete spectrum of energy that Earth reflects and radiates back into space, measurements that should provide a clearer understanding of the .

NIST’s role will focus on the calibration of the instruments aboard CLARREO satellites, as well as on the accuracy that the sensors must meet. The measurements need to be characterized to far greater accuracy—from two to 10 times better, depending on the wavelength of light in question—and detector standards need to be developed for the far infrared region of the spectrum. NIST will also help NASA improve its own capabilities in instrument calibration. The collaboration was finalized in a Space Act Agreement on Feb. 4, 2010.

CLARREO, led by NASA Langley Research Center in Hampton, Va., is now among NASA’s top-priority missions because of its high ranking by the National Research Council, which designated CLARREO one of its four “Tier One” missions when it evaluated proposals in 2007. is allocating $270,000 for NIST’s contributions to the project this year.

The mission is part of a longer-term effort to establish global long-term that are of high accuracy and traceable to the international system of units (SI). The CLARREO satellites and other instruments will be calibrated against international standards based on SI, so that observations from different times and locations can be compared usefully, creating a more reliable record of long-term climate trends.

Explore further: Video gives astronaut's-eye view inside NASA's Orion spacecraft

add to favorites email to friend print save as pdf

Related Stories

NASA Satellites Will Reveal Secrets of Clouds and Aerosols

Sep 15, 2005

Two NASA satellites, planned for launch no earlier than Oct. 26, will give us a unique view of Earth's atmosphere. CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) are undergoing final ...

Data From Newest Ocean Satellite Ready for Their 'Close-up'

Aug 07, 2009

Following a year of calibration and validation by an international team of scientists, fully-validated, research-quality sea surface height data from the NASA/French Space Agency Ocean Surface Topography Mission/Jason-2 ...

U.S.-Taiwan satellites to be launched

Apr 12, 2006

Six satellites designed to improve weather forecasts and monitor climate change are ready for launch from Vandenberg Air Force Base in California.

Recommended for you

SDO captures images of two mid-level flares

Dec 19, 2014

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts ...

Why is Venus so horrible?

Dec 19, 2014

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

Dec 19, 2014

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

Dec 19, 2014

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.