Scientists unlock key enzyme using newly created 'cool' method

Feb 26, 2010

A team of Michigan State University scientists -- using a new cooling method they created -- have uncovered the inner workings of a key iron-containing enzyme, a discovery that could help researchers develop new medicines or understand how enzymes repair DNA.

Taurine/alpha-ketoglutarate dioxygenase, known as TauD, is a that is important in metabolism. Enzymes in this family repair DNA, sense oxygen and help produce antibiotics.

Specifically, the MSU team was interested in how iron and reacted together in the enzyme. Understanding how TauD works, which serves as a model for many other proteins, has implications in the scientific and medical fields, said Robert Hausinger, MSU professor of microbiology and .

"This is a broad enzyme family with similar mechanisms," he said. "Understanding how TauD works sheds light on how many other enzymes function from bacteria to humans. This can be applicable to a wide variety of essential enzymes of medical and agricultural interest."

For example, Hausinger said, understanding how the works can help scientists design inhibitors to prevent it from doing its job, which is a key step in preventing diseases. Also, understanding how the iron inserts oxygen atoms into other molecules provides insight into how enzymes metabolize the majority of medical drugs or in the human body.

As understanding how enzymes work can be very complicated — such reactions often are complex, fast and require multiple steps — the MSU team developed a new method to follow the TauD reaction. The difficult part for researchers was to slow down the reaction enough that the individual steps can be observed; one way to slow down an enzymatic reaction is to cool it.

The team used a stream of cold to slow down the reaction at -36 C (-33 F). To prevent freezing and to keep the reaction going, the scientists used - the same antifreeze that goes in vehicles.

Once the reaction started, the team used lasers - in an advanced method called Raman spectroscopy - to follow the vibrations of iron and oxygen atoms in TauD to determine how the reaction progressed. They found never seen before steps in the TauD reaction, overturning conventional thought.

The research was recently published in the Proceedings of National Academy of Sciences Early Edition.

Explore further: Breakthrough points to new drugs from nature

Related Stories

Unlocking the function of enzymes

Nov 06, 2007

Fitting a key into a lock may seem like a simple task, but researchers at Texas A&M University are using a method that involves testing thousands of keys to unlock the functions of enzymes, and their findings could open the ...

Bacteria beat the heat

Aug 30, 2006

How do some microorganisms manage to exist and even thrive in surroundings ranging from Antarctica to boiling hot springs? A team of scientists from the Weizmann Institute's Plant Sciences Department, led by Prof. Avigdor ...

Cell respiration process is identified

Apr 06, 2006

University of Helsinki scientists have identified an internal electron transfer reaction that starts the proton pump mechanism of the respiratory enzyme.

Recommended for you

Breakthrough points to new drugs from nature

4 hours ago

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

World's first successful visualisation of key coenzyme

4 hours ago

Japanese researchers have successfully developed the world's first imaging method for visualising the behaviour of nicotine-adenine dinucleotide derivative (NAD(P)H), a key coenzyme, inside cells. This feat ...

User comments : 0

More news stories

Breakthrough points to new drugs from nature

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

A greener source of polyester—cork trees

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...

Progress in the fight against quantum dissipation

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...