New process yields high-energy-density, plant-based transportation fuel

Feb 25, 2010 by Renee Meiller

(PhysOrg.com) -- A team of University of Wisconsin-Madison engineers has developed a highly efficient, environmentally friendly process that selectively converts gamma-valerolactone, a biomass derivative, into the chemical equivalent of jet fuel.

The simple process preserves about 95 percent of the energy from the original biomass, requires little hydrogen input, and captures carbon dioxide under high pressure for future beneficial use.

With James Dumesic, Steenbock Professor of Chemical and Biological Engineering at UW-Madison, postdoctoral researchers Jesse Bond and David Martin Alonso, and graduate students Dong Wang and Ryan West published details of the advance in the Feb. 26 edition of the journal Science.

Much of the Dumesic group's previous research of using cellulosic biomass for biofuels has focused on processes that convert abundant plant-based sugars into transportation fuels. However, in previously studied conversion methods, frequently degrade to form levulinic acid and formic acid — two products the previous methods couldn't readily transform into high-energy liquid fuels.

The team's new method exploits sugar's tendency to degrade. "Instead of trying to fight the degradation, we started with levulinic acid and formic acid and tried to see what we could do using that as a platform," says Dumesic.

In the presence of metal catalysts, the two acids react to form gamma-valerolactone, or GVL, which now is manufactured in small quantities as an herbal food and perfume additive. Using laboratory-scale equipment and stable, inexpensive catalysts, Dumesic's group converts aqueous solutions of GVL into jet fuel. "It really is very simple," says Bond, of the two-step catalytic process. "We can pull off these two catalytic stages, as well as the requisite separation steps, in series, with basic equipment. With very minimal processing, we can produce a pure stream of jet-fuel-range alkenes and a fairly pure stream of carbon dioxide."

While biofuels such as ethanol are becoming more popular as blending agents in automobile fuels, they have limitations for use in jet fuel because of their low energy density. And, given present internal combustion engine designs, conventional biofuels cannot fully replace petroleum-derived hydrocarbons. "The hydrocarbons produced from GVL in this new process are chemically equivalent to those used in the present infrastructure," says Alonso. "The product we make is ready for the jet fuel application and can be added to existing hydrocarbon blends, as needed, to meet specs."

The biggest barrier to implementing the renewable fuel is the cost of GVL. Until now, says Dumesic, there has not been an incentive to mass-produce the compound. "The bottleneck in having the fuel ready for prime time is the availability of cost-effective GVL," he says.

Now that they have demonstrated the process for converting GVL to , Dumesic and his students are developing more efficient methods for making GVL from biomass sources such as wood, corn stover, switchgrass and others. "Once the GVL is made effectively, I think this is an excellent way to convert it to ," he says.

Explore further: New, more versatile version of Geckskin: Gecko-like adhesives now useful for real world surfaces

Related Stories

'Green' gasoline on the horizon?

Jan 13, 2009

University of Oklahoma researchers believe newer, more environmentally friendly fuels produced from biomass could create alternative energy solutions and alleviate dependence on foreign oil without requiring changes to current ...

Fats into jet fuel -- NC State 'green' technology licensed

Feb 28, 2007

New biofuels technology developed by North Carolina State University engineers has the potential to turn virtually any fat source – vegetable oils, oils from animal fat and even oils from algae – into fuel to power jet ...

Coal-based fuels and products hit the refinery

Aug 20, 2007

A variety of end products including jet fuel, gasoline, carbon anodes and heating oil may be possible using existing refineries and combinations of coal and refinery by-products, according to a team of Penn State researchers. ...

Recommended for you

A greener source of polyester—cork trees

Apr 16, 2014

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Caliban
1 / 5 (2) Feb 25, 2010
Given their limited application as automotive fuels, why not re-task them as fuel for some other energy production task? Pair this tech with Bloom Box or whatever. And while your at it, UW-Madison, why not try to find a cheap, green way to catalyse CO2 into O2 and C? Much more useful that way, and more easily stored. And if you can engineer a scalable process- the sky's the limit.
david_42
not rated yet Feb 26, 2010
Not that big a step from kerosene to diesel.

CO2 to oxygen and carbon requires lots of energy, Caliban. Catalysts only change the speed of a reaction, they don't change the energy requirements.

More news stories

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...