A New Way Forward for Nanocomposite Nanostructures

Feb 24, 2010
The heated probe of an atomic force microscope melts a nanoparticle-polymer composite enabling it to flow onto a surface. The nanocomposite can be used as-is or the nanoparticles released with an oxygen plasma. (Image courtesy of UIUC and NRL.)

(PhysOrg.com) -- Scientists at the Naval Research Laboratory and the University of Illinois-Urbana Champaign recently reported a new technique for directly writing composites of nanoparticles and polymers.

Recent years have seen significant advances in the properties achieved by both these materials, and so researchers have begun to blend these materials into nanocomposites that access the properties of both materials. Forming these nanocomposites into structures has been tricky since each nanocomposite would require a particular set of solvents or a particular surface coating. To solve this problem, the NRL and UIUC team developed a generic means for depositing many nanocomposites on multiple surfaces with nanoscale precision. Metal that were conducting, tiny , and nanoparticles that glowed, were all deposited using this one technique.

The technique builds on previous work using (AFM) probes as pens to produce nanometer-scale patterns. The polymer-nanocomposite blend is coated onto the probe. When the probe is heated, it acts like a miniature soldering iron to deposit the nanocomposite. "This technique greatly simplifies nanocomposite deposition," said Paul E. Sheehan, head of the Surface Nanoscience and Sensor Technology Section at NRL in Washington, D.C. "No longer do you have to spend half a year tweaking the chemistry of the surface or nanocomposite to achieve deposition."

The technique also solves a common problem when depositing soft materials like polymers and nanocomposites. The solvents and patterning procedures for depositing soft materials can damage any soft material already deposited. Consequently, it can be quite difficult to deposit many different such materials. "Our ability to control nanometer-scale heat sources allows local thermal processing of these nanocomposites," says William King, Kritzer Faculty Scholar in the Department of Mechanical Science and Engineering at the University of Illinois Urbana-Champaign. This opens a door to the direct writing of highly complex structures.

Although the nanoparticles were typically dispersed throughout the nanocomposite, the researchers found that by adjusting the nanoparticle chemistry they could force the nanoparticles into alignment. "With the right chemistry, the forces in the polymer will guide the nanoparticles into thin rows." Rows of nanoparticles less than 10 nm wide were written, narrower than any other direct write technique. The string of magnetic nanoparticles should be useful for studying magnetic interactions on the smallest scales. "Combining with our nanolithographic technique these tiny magnetic nanostructures can be added to current electronic or MEMS devices to enhance their capabilities." says Woo Kyung Lee. "These capabilities and those of the other may find novel applications from microelectronics to biomedical devices."

The technique was published on January 13th, 2010, in the journal Nano Letters. The research was sponsored by the Defense Advanced Research Projects Agency (DARPA).

Explore further: Making 'bucky-balls' in spin-out's sights

Related Stories

Improved Method for Nanometer-Scale Patterns Writing

Aug 30, 2004

Researchers from the Georgia Institute of Technology and the Naval Research Laboratory (NRL) have developed an improved method for directly writing nanometer-scale patterns onto a variety of surfaces. The new wr ...

Researchers find new route to nano self-assembly

Oct 22, 2009

(PhysOrg.com) -- If the promise of nanotechnology is to be fulfilled, nanoparticles will have to be able to make something of themselves. An important advance towards this goal has been achieved by researchers ...

Making Better Magnetic Nanoparticles

Dec 18, 2006

Using a polymer coating designed to resemble the outer surface of a cell membrane, a team of investigators led by Steve Armes, Ph.D., of the University of Sheffield in the United Kingdom, has created a highly stable, biocompatible ...

Recommended for you

Making 'bucky-balls' in spin-out's sights

5 hours ago

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

Polymer microparticles could help verify goods

Apr 13, 2014

Some 2 to 5 percent of all international trade involves counterfeit goods, according to a 2013 United Nations report. These illicit products—which include electronics, automotive and aircraft parts, pharmaceuticals, ...

New light on novel additive manufacturing approach

Apr 11, 2014

(Phys.org) —For nearly a century, electrophoretic deposition (EPD) has been used as a method of coating material by depositing particles of various substances onto the surfaces of various manufactured items. ...

User comments : 0

More news stories

Physicists create new nanoparticle for cancer therapy

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.