New cardiac CT technology drastically reduces patient radiation exposure

Feb 23, 2010

In a new study published in the March issue of Radiology, researchers from Columbia University and the National Heart, Lung and Blood Institute have determined that an imaging exam of the heart using the latest generation of CT technology exposes patients to as much as 91 percent less radiation than standard helical CT scanning.

"Coronary CT angiography has generated great enthusiasm in recent years, due to its diagnostic accuracy in assessing patients with known or suspected ," said Andrew J. Einstein, M.D., Ph.D., assistant professor of clinical medicine in radiology and director of cardiac CT research at Columbia University Medical Center. "However, that enthusiasm has been tempered by concern about the potentially high received by patients."

In CT, numerous x-ray beams and a set of x-ray detectors rotate around the patient, measuring the amount of radiation being absorbed in the body. At the same time, the exam table moves through the scanner allowing the x-ray beam to follow a helical or spiral path.

Many coronary CT angiography exams are conducted on 64-detector row CT scanners, which can image four centimeters at a time. The latest generation of CT technology, a 320-detector row volume CT scanner, can image 16 centimeters—or the entire length of the heart—in a single rotation and within a single heartbeat.

In his study, Dr. Einstein and a team of researchers compared the incurred during a coronary CT angiography procedure using a 64-detector row helical scanning and volume scanning, using a 320-detector row volume . Phantoms simulating the male and female body were imaged using six different scan modes.

Using standard 64-detector row helical scanning as the benchmark, the effective radiation dose was reduced by 91 percent from 35.4 millisieverts (mSv) to 4.4 mSv using optimized 320-detector row volume scanning.

"By imaging the entire heart in one piece, volume scanning eliminates artifacts due to seams or gaps between image sections," said Dr. Einstein. "Moreover, the x-ray tube is left on for only a brief duration, as little as .35 seconds."

According to Dr. Einstein, state-of-the-art CT technology emphasizes optimal image resolution with the ability to lower radiation dose through a variety of features and scan modes that adjust and modulate the dose based on the specific needs of the individual patient.

"As CT technology advanced from 16- to 64-slice capabilities, the radiation dose went up significantly," he said. "Today, technology development is going in the opposite direction, reducing radiation exposure."

Dr. Einstein emphasized that practitioners must pay careful attention to using the appropriate scan mode to obtain diagnostic information with the least amount of radiation exposure to the patient.

Explore further: Merck drug Keytruda effective against 3 cancers

Related Stories

Radiation dose drastically reduced during whole chest MDCT

Jun 24, 2009

Emergency physicians who evaluate patients with non-specific chest pain using whole chest multi-detector CT (MDCT) combined with retrospective electrocardiogram (ECG) gating can reduce the patient radiation dose by 71% using ...

Recommended for you

Merck drug Keytruda effective against 3 cancers

1 hour ago

One of the hot new cancer immunotherapy drugs, Merck & Co.'s Keytruda, strongly benefited patients with melanoma, lung cancer and mesothelioma, according to three studies presented Sunday at the American Association for Cancer ...

DNA blood test detects lung cancer mutations

Apr 17, 2015

Cancer DNA circulating in the bloodstream of lung cancer patients can provide doctors with vital mutation information that can help optimise treatment when tumour tissue is not available, an international group of researchers ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.