Tumor mechanism identified

Feb 22, 2010

Researchers from the Peninsula Medical School in Plymouth (UK), the Memorial Sloan-Kettering Cancer Center in New York, Cornell University in New York, Weil Medical College in New York and the Center for Neural Tumour Research in Los Angeles, have for the first time identified a key mechanism that makes certain cells become tumorous in the brain. The resulting tumours occur most often spontaneously but can also occur in numbers as part of the inherited disease Neurofibromatosis type 2.

The research is published in the highly respected journal, Cell.

The tumours are caused by mutations affecting a protein called Merlin, which in turn causes cancers in a range of cell types including Schwann cells. Schwann cells produce the sheaths that surround and insulate neurons.

The new research investigates for the first time the role of Merlin in the . It explains how Merlin regulates , and how it regulates . Normally Merlin inhibits the development of tumours at a cell nucleus level - mutations affecting Merlin affect its ability to inhibit. By understanding this mechanism for the first time, the way is open for the development of effective therapies for a condition in which no treatment other than surgery exists.

In neurofibromatosis 2 the sheer number of the tumours can overwhelm a patient, often leading to severe disability and eventually death. Patients can suffer from 20 to 30 tumours at any one time, and the condition typically affects older children and young adults.

No therapy, other than invasive (radio)surgery aiming at a single and which may not eradicate the full extent of the tumours, exists.

The condition of multiple tumours , neurofibromatosis type two (NF2), affects one in every 2,500 people worldwide. It can affect any family, regardless of past history, through and currently there is no cure.

Professor Oliver Hanemann, who led the research from the Peninsula Medical School, commented: "This has been an exciting collaboration with colleagues in the United States resulting in a landmark publication. Until now, there has been no meaningful work on the role of Merlin in the nucleus. The results of our research show a greater understanding of the fundamental part played by Merlin in the repression of tumorous cells, and how this part is undermined when the protein is mutated. Identification of the difference in mechanisms will allow us to develop therapies for the future."

Explore further: The fine line between breast cancer and normal tissues

Provided by The Peninsula College of Medicine and Dentistry

4.7 /5 (6 votes)

Related Stories

Research to lead to brain tumor therapies

Mar 24, 2008

Unique human in vitro model (cell culture) research currently underway at the Peninsula Medical School in the South West of England is set to identify and develop therapies for the treatment of multiple tumours in the brain.

New target for cancer therapy identified

Sep 21, 2006

A new target for cancer therapy has been identified by Monash University scientists investigating the cell signalling pathways that turn on a gene involved in cancer development.

Recommended for you

The fine line between breast cancer and normal tissues

10 hours ago

Up to 40 percent of patients undergoing breast cancer surgery require additional operations because surgeons may fail to remove all the cancerous tissue in the initial operation. However, researchers at Brigham ...

Pancreatic cancer risk not higher with diabetes Rx DPP-4i

11 hours ago

(HealthDay)—There is no increased short-term pancreatic cancer risk with dipeptidyl-peptidase-4 inhibitors (DPP-4i) compared to sulfonylureas (SU) and thiazolidinediones (TZD) for glycemic control, according ...

Good bowel cleansing is key for high-quality colonoscopy

13 hours ago

The success of a colonoscopy is closely linked to good bowel preparation, with poor bowel prep often resulting in missed precancerous lesions, according to new consensus guidelines released by the U.S. Multi-Society Task ...

New rules for anticancer vaccines

15 hours ago

Scientists have found a way to find the proverbial needle in the cancer antigen haystack, according to a report published in The Journal of Experimental Medicine.

User comments : 0