Tumor mechanism identified

Feb 22, 2010

Researchers from the Peninsula Medical School in Plymouth (UK), the Memorial Sloan-Kettering Cancer Center in New York, Cornell University in New York, Weil Medical College in New York and the Center for Neural Tumour Research in Los Angeles, have for the first time identified a key mechanism that makes certain cells become tumorous in the brain. The resulting tumours occur most often spontaneously but can also occur in numbers as part of the inherited disease Neurofibromatosis type 2.

The research is published in the highly respected journal, Cell.

The tumours are caused by mutations affecting a protein called Merlin, which in turn causes cancers in a range of cell types including Schwann cells. Schwann cells produce the sheaths that surround and insulate neurons.

The new research investigates for the first time the role of Merlin in the . It explains how Merlin regulates , and how it regulates . Normally Merlin inhibits the development of tumours at a cell nucleus level - mutations affecting Merlin affect its ability to inhibit. By understanding this mechanism for the first time, the way is open for the development of effective therapies for a condition in which no treatment other than surgery exists.

In neurofibromatosis 2 the sheer number of the tumours can overwhelm a patient, often leading to severe disability and eventually death. Patients can suffer from 20 to 30 tumours at any one time, and the condition typically affects older children and young adults.

No therapy, other than invasive (radio)surgery aiming at a single and which may not eradicate the full extent of the tumours, exists.

The condition of multiple tumours , neurofibromatosis type two (NF2), affects one in every 2,500 people worldwide. It can affect any family, regardless of past history, through and currently there is no cure.

Professor Oliver Hanemann, who led the research from the Peninsula Medical School, commented: "This has been an exciting collaboration with colleagues in the United States resulting in a landmark publication. Until now, there has been no meaningful work on the role of Merlin in the nucleus. The results of our research show a greater understanding of the fundamental part played by Merlin in the repression of tumorous cells, and how this part is undermined when the protein is mutated. Identification of the difference in mechanisms will allow us to develop therapies for the future."

Explore further: Viral therapy could boost limb-saving cancer treatment

Provided by The Peninsula College of Medicine and Dentistry

4.7 /5 (6 votes)

Related Stories

Research to lead to brain tumor therapies

Mar 24, 2008

Unique human in vitro model (cell culture) research currently underway at the Peninsula Medical School in the South West of England is set to identify and develop therapies for the treatment of multiple tumours in the brain.

New target for cancer therapy identified

Sep 21, 2006

A new target for cancer therapy has been identified by Monash University scientists investigating the cell signalling pathways that turn on a gene involved in cancer development.

Recommended for you

Lanreotide improves survival with enteropancreatic tumors

13 hours ago

(HealthDay)—Lanreotide significantly improves survival among patients with metastatic enteropancreatic neuroendocrine tumors (grade 1 or 2), according to a study published in the July 17 issue of the New En ...

User comments : 0