Diffusion of a soluble protein through a sensory cilium

Feb 22, 2010
Calvert et al. measured protein diffusion through a sensory cilium. Credit: Calvert, P.D. 2010. J. Gen. Physiol. doi:10.1085/jgp.200910322.

A team of researchers led by Peter Calvert (SUNY Upstate Medical University) has, for the first time, measured the diffusion coefficient of a protein in a primary cilium and in other major compartments of a highly polarized cell. The study appears in the March issue of the Journal of General Physiology.

Transport of proteins to and from cilia is crucial for normal cell function and survival, and interruption of transport has been implicated in degenerative diseases and neoplastic diseases, such as cancer. Researchers believe that cilia impose selective barriers to the movement of proteins, but because of the narrow and complex structure of cilia—with diameters near or below the resolution of light microscopy—this hypothesis has been difficult to examine.

Using confocal and multiphoton microscopy, Calvert and his team—including William Schiesser (Lehigh University) and Edward Pugh (University of California, Davis)—measured the mobility of PAGFP (photoactivatable ) in the connecting cilium (CC) of retinal rod photoreceptors in frogs, as well as in the subcellular compartments bridged by the CC. In addition, the team measured the overall time for the protein concentration to equilibrate within and between compartments.

The results establish that the CC does not pose a major barrier to protein diffusion within the rod cell, but that the axial diffusion in each of the rod's compartments is substantially delayed relative to that in .

Explore further: Novel marker discovered for stem cells derived from human umbilical cord blood

More information: Calvert, P.D. 2010. J. Gen. Physiol. doi:10.1085/jgp.200910322

add to favorites email to friend print save as pdf

Related Stories

Scientists study cilia -- microscopic hair

May 05, 2006

Texas scientists studying microscopic hairs called cilia say they found an internal structure that's responsible for a cell's response to external signals.

Some skin cancer may be mediated by primary cilia activity

Aug 23, 2009

Tiny, solitary spikes that stick out of nearly every cell in the body play a central role in a type of skin cancer, new research has found. The discovery in mice shows that the microscopic structures known as primary cilia ...

Recommended for you

New pain relief targets discovered

9 hours ago

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

Building 'smart' cell-based therapies

10 hours ago

A Northwestern University synthetic biology team has created a new technology for modifying human cells to create programmable therapeutics that could travel the body and selectively target cancer and other ...

Proper stem cell function requires hydrogen sulfide

13 hours ago

Stem cells in bone marrow need to produce hydrogen sulfide in order to properly multiply and form bone tissue, according to a new study from the Center for Craniofacial Molecular Biology at the Herman Ostrow School of Dentistry ...

User comments : 0

More news stories

Chronic inflammation linked to 'high-grade' prostate cancer

Men who show signs of chronic inflammation in non-cancerous prostate tissue may have nearly twice the risk of actually having prostate cancer than those with no inflammation, according to results of a new study led by researchers ...

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...