Metal oxide 'can transform'

Feb 15, 2010
Model of the surface of strontium titanate.

(PhysOrg.com) -- A team including Oxford University scientists has been investigating what happens to the top layer of atoms on the surface of a material that splits water and has potential uses in nanoelectronics.

An international team, including Oxford University scientists, has been investigating what happens to the top layer of on the surface of a material.

The material is strontium titanate: a complex that many researchers are interested in because of its ability to split water into hydrogen and oxygen with sunlight and its potential for use in .

The team used a variety of techniques including (STM) to directly ‘see’ the arrangement of surface atoms. Their observations, reported in this week’s , reveal a series of structures with a surprisingly close and orderly arrangement.

‘In most materials, when you create a surface, the top layer of atoms rearrange to different positions from those in the rest of the material. This rearrangement of atoms is usually locked into a particular configuration that will minimise the surface energy.’ said Dr Martin Castell of Oxford University’s Department of Materials, an author of the paper. ‘However, this is not the case for the surface of strontium titanate that we have been studying. This surface forms a whole family of different structures. Chemists would call these structures a homologous series - something that is routinely observed in the bulk of crystals, but not until now on the surface.’

These ‘transformations’ could prove very important to researchers hoping to use strontium titanate in order to build new kinds of nanoelectronic devices or to grow .

The report also suggests that the techniques developed by the researchers could make it possible to predict the structures of other oxides.

'We have needed to use many different sophisticated experimental and theoretical approaches to solve this problem,' said Dr Castell. 'Our aim is to continue to work closely with our collaborators at Northwestern University in the US to solve related materials problems.'

The research was conducted by a team was led by Dr Martin Castell of Oxford University UK and Professor Laurence Marks and Professor Ken Poeppelmeier of Northwestern University, USA.

Explore further: Researchers make nanostructured carbon using the waste product sawdust

More information: A report of the research, ‘A homologous series of structures on the surface of SrTiO3 (110)’, is published in this week’s Nature Materials. (www.nature.com/nmat/journal/va… t/full/nmat2636.html)

Related Stories

Experiments Prove Existence of Atomic Chain Anchors

Feb 03, 2005

Atoms at the ends of self-assembled atomic chains act like anchors with lower energy levels than the “links” in the chain, according to new measurements by physicists at the National Institute of Standards ...

Nanoscale materials grow with the flow (Videos)

Feb 12, 2009

Imagine unloading a pile of bricks onto the ground and watching the bricks assemble themselves into a level, straight wall in only a few minutes. While merely a fantasy for builders in the everyday world, ...

Recommended for you

Nanoparticle technology triples the production of biogas

Oct 22, 2014

Researchers of the Catalan Institute of Nanoscience and Nanotechnology (ICN2), a Severo Ochoa Centre of Excellence, and the Universitat Autònoma de Barcelona (UAB) have developed the new BiogàsPlus, a technology which allows ...

Research unlocks potential of super-compound

Oct 22, 2014

Researchers at The University of Western Australia's have discovered that nano-sized fragments of graphene - sheets of pure carbon - can speed up the rate of chemical reactions.

User comments : 0