Computational Science Programming Model Crosses the Petaflop Barrier

Feb 12, 2010
Global Arrays are distributed dense arrays that can be accessed through a shared memory-like style.

(PhysOrg.com) -- Researchers at Pacific Northwest National Laboratory and Oak Ridge National Laboratory have demonstrated that the PNNL-developed Global Arrays computational programming model can perform at the petascale level. The demonstration performed at 1.3 petaflops-or 1.3 quadrillion numerical operations per second—using over 200,000 processors. This represents about 50% of the processors' peak theoretical capacity. Global Arrays is one of only two parallel programming models that have achieved this level of performance.

The Global Arrays technology was used in a computational chemistry simulation that was presented during the annual International Conference on High-Performance Computing, Networking, Storage and Analysis in Portland, Oregon in November. The conference is sponsored by the Association for Computing Machinery and the Institute of Electrical and Electronics Engineers. The paper describing the simulation was a finalist for the Gordon-Bell prize that recognizes outstanding achievement in high-performance computing applications.

Why it matters: Global Arrays enables researchers to more efficiently access global data, run bigger models, and simulate larger systems, resulting in a better understanding of the data and processes being evaluated.

For example, the data used in this demonstration focused on water modeling. Water is essential in numerous key chemical and biological processes, and accurate models are critical to understanding, controlling, and predicting the physical and chemical properties of complex aqueous systems.

The computational chemistry simulation performed using Global Arrays provided researchers with more accurate data pertaining to research on the properties of water at the molecular level as well as its interactions with molecules and its behavior at interfaces.

Methods: Scientific data is stored in the memory of computer nodes. The processor in the node can only access the data in its own memory, while most analysis and research depends on the ability to access and use data stored in multiple nodes. Standard programming models require coordination between processes to send and receive data .

Global Arrays allows researchers to access data directly from the memory of another node without requiring interaction from the remote processor—the process can send or receive data to or from another process with no coordination in advance.

Explore further: UT Dallas professor to develop framework to protect computers' cores

More information: See the Global Arrays Toolkit website.

Related Stories

Recommended for you

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Husky
not rated yet Feb 13, 2010
That looks like software implementation of Fermi GPU nodes, makws you wonder what a rack of these cards would do

More news stories

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...

Under some LED bulbs whites aren't 'whiter than white'

For years, companies have been adding whiteners to laundry detergent, paints, plastics, paper and fabrics to make whites look "whiter than white," but now, with a switch away from incandescent and fluorescent lighting, different ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...