Researchers Envision High-Tech Applications For 'Multiferroic' Crystals

Feb 11, 2010 By Barry Ray
This is Sir Harold W. "Harry" Kroto of the Florida State University. Credit: Florida State University

(PhysOrg.com) -- Two of The Florida State University’s most accomplished scientists recently joined forces on a collaborative research project that has yielded groundbreaking results involving an unusual family of crystalline minerals. Their findings could lay the groundwork for future researchers seeking to develop a new generation of computer chips and other information-storage devices that can hold vast amounts of data and be strongly encrypted for security purposes.

Working with a team of researchers from various disciplines, Naresh S. Dalal and Sir Harold W. “Harry” Kroto, both world-renowned chemists and educators, took a close look at a family of crystals known as metal-organic frameworks, or MOFs. Employing both laboratory experimentation and , they found that four such crystals possessed properties that rarely coexist.

“We identified these four crystals as ‘multiferroic,’ meaning that they are simultaneously ferromagnetic and ferroelectric in nature when cooled to a specific temperature,” said Dalal, Florida State’s Dirac Professor of Chemistry and Biochemistry. ( means a material possesses magnetic poles, while ferroelectricity refers to a material that possesses positive and negative electrical charges that can be reversed when an external electrical field is applied.)

“Normally, these two properties are mutually exclusive,” Dalal said. “Most materials are either ferromagnetic or ferroelectric based on the number of in the ion’s outer electron shell. Therefore, finding four multiferroic materials at one time is quite scientifically significant and opens numerous doors in terms of potential applications.”

Multiferroic materials have been a hot topic of research in recent years, with researchers finding applications in the areas of and the design of advanced optical elements, among others. Kroto sees another potential use: in the creation of high-powered computer memories and other data storage devices that can hold far more information than is currently possible.

“Theoretically, it might be possible to design devices that are much smaller and faster than the ones we use today to store and transmit data,” said Kroto, a Francis Eppes Professor in Florida State’s Department of Chemistry and Biochemistry. “And with data split over two mediums, information could be encrypted in a way that makes it far more secure than is currently possible. This could have wide-ranging applications in areas as diverse as the aeronautics industry, the military, the workplace and even the average consumer’s home.”

Dalal pointed to another possible benefit — high-tech devices that make far less of an environmental impact.

“The four new multiferroic crystals that we have identified all substitute other, less toxic metals for lead, which is a potent neurotoxin,” he said. “By reducing the amount of lead that enters landfills, we also reduce the amount that enters our water supply — and our bodies.”

Dalal, Kroto and their colleagues recently published a paper on their findings in the peer-reviewed Journal of the American Chemical Society (JACS). Their research was then summarized in a second article published in the prestigious international science journal Nature.

“On the basis of the type of materials research I was keen to initiate here at Florida State, it was natural to collaborate with Dr. Dalal due to his deep understanding of the complexities of phase transitions,” Kroto said. “It is in particular the subtle aspects of phase behavior, well beyond those traditional ones exhibited by normal gases, liquids and solids, that led to this work being highlighted recently by Nature and Angewandte Chemie.”

Explore further: New antimicrobial edible films that increase the lifespan of cheese

Related Stories

Scientists find new set of multiferroic materials

Oct 20, 2009

(PhysOrg.com) -- The trail to a new multiferroic started with the theories of a U.S. Department of Energy's Argonne National Laboratory scientist and ended with a multidisciplinary collaboration that created ...

Researchers Developing More Powerful Solar Cells

Sep 18, 2006

Sure, Iowa has its share of rainy, snowy and cloudy days. But look out the window. “We have a lot of sunlight,” said Vikram Dalal as sunshine lit up a late-summer morning and the south-facing windows of his office at ...

Electric Switches Hold Promise for Data Storage

May 22, 2009

(PhysOrg.com) -- Multiferroics are materials in which unique combinations of electric and magnetic properties can simultaneously coexist. They are potential cornerstones in future magnetic data storage and ...

Recommended for you

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.