Organic Layers Pave Way for Next Generation of Biosensors and Solar Cells

Feb 03, 2010
First frame: A droplet of water is about to be dropped onto a silicon surface. Second frame: On the original surface the droplet is tall, exhibiting minimal contact with the surface. Final frame: After modification, the surface has become more hydrophilic, an indication of progress toward researchers’ goal of creating a silicon surface that will bond with organic molecules.

( -- UT Dallas researchers have laid the groundwork for attaching virtually any organic molecule to silicon, a technological feat that promises to greatly improve semiconductor devices’ performance in health care and solar power applications in particular.

“This is very exciting to have been able to go beyond what was thought to be possible,” said Dr. Yves Chabal, principal investigator in the project and head of the Materials Science and Engineering Department at UT Dallas.

His team’s accomplishments were reported in two articles in the October 2009 and February 2010 issues of the journal Nature Materials.

For semiconductors such as silicon to interact with the environment - as a biosensor that detects cancer-marker proteins, for example - it would be necessary to have an organic layer that interacts with those proteins. That interaction would then be detected by traditional circuitry underneath.

A critical challenge for fabricating biosensors and photovoltaic solar cells is to attach functional organic molecules without introducing electronic defects at the semiconductor surface. Up until now, devices were made using oxidized silicon, resulting in poor stability. And photovoltaic devices were limited due to what are known as interface traps, resulting in less-efficient .

Nearly 20 years ago, Chabal and co-workers at Bell Labs devised a method to prepare oxide-free silicon surfaces perfectly terminated with a layer of . Recently, methods to attach organic molecules to that surface have been developed, but the number of molecules that can be attached is very limited, restricting the value of these methods for most applications, such as biosensors, microelectronics, optoelectronics and solar receptors. If oxidized surfaces are used instead, poor stability results, limiting performance and eliminating widespread use.

Chabal’s latest effort took five years, culminating in several breakthroughs that enable two novel ways to make hydrogen-terminated silicon surfaces more reactive with organic molecules. The key to these processes is the ability to nanopattern these silicon surfaces in a very controlled fashion.

“We persisted primarily because of the excitement of the scientific discovery,” he said, “but also because I could see that such fundamental knowledge could have a big impact on industrial applications.”

In addition to enabling biosensors that detect minute quantities of substances such as cancer-marker proteins, the new technology promises a new generation of higher-efficiency , which have long languished at efficiency of less than 50 percent. Such higher-efficiency photovoltaic cells would incorporate sunlight-sensitive biomolecules, nanoparticles or quantum dots that capture photons and transfer the energy to the electronic substrate.

Chabal, who also holds the Texas Instruments Distinguished University Chair in Nanoelectronics at UT Dallas, believes the findings of his team’s results could find their place in commercial applications within five to 10 years.

Explore further: New research predicts when, how materials will act

More information:

Related Stories

Solar Cell Researcher Explores Nanotech Ideas

Oct 05, 2009

( -- A UT Dallas researcher envisions a time soon when plastic sheets of solar cells are inexpensively stamped out in factories and then affixed to cell phones, laptops and other power-hungry mobile ...

Sunny Record: Breakthrough for Hybrid Solar Cells

Feb 02, 2010

German scientists at the Department of Microsystems Engineering (IMTEK) and the Freiburg Materials Research Center (FMF) have succeeded in developing a method for treating the surface of nanoparticles which ...

Renewable energies : the promise of organic solar cells

Apr 08, 2009

( -- In the race to renewable energy, organic solar cells are now really starting to take off. They can be manufactured easily and cheaply, they have low environmental impact, and since they are compatible with ...

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Feb 03, 2010
Dear Mohan Ji,
What do you think of this area. I see that such attachments of organic layer onto Si is bound to enhance solar conversion efficiency. Perhaps it is being done through creating a nanostructure mask over the Silicon surface layer to boost adhesion of organic top layer. Can you enlighten me further. May be it is a line of work with tremendous potential the world over. Hope you will be able to respond! Narendra Nath

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.