Here's looking at dew: spiders snare water from the air

Feb 03, 2010
A spider clings to a rain filled web. Fog-catching nets which provide precious water in rain-starved parts of the world may be poised for a high-tech upgrade thanks to the spider.

Fog-catching nets which provide precious water in rain-starved parts of the world may be poised for a high-tech upgrade thanks to the spider.

In a paper published in the journal Nature on Wednesday, Chinese scientists report on why spider's silk is not only famous for strength but also terrific for collecting water from the air, sparing the creature a hunt for a drink.

The secret, revealed by , lies in the silk's tail-shaped protein fibres which change structure in response to water.

Once in contact with humidity, tiny sections of the thread scrunge up into knots, whose randomly arranged nano-fibres provide a roughly, knobbly texture.

In between these "spindle knots" are joints, which are smooth and slender, comprising neatly aligned fibres.

Small droplets then condense randomly on the spider's web. Once they reach a critical size, the droplets slide along the slick-surfaced joints thanks to .

The droplets then reach the spindle knots, where they coalesce with larger drops.

As a result, the joints are freed up to begin a new cycle of condensation and water collection.

The researchers, led by Lei Jiang of the Chinese Academy of Sciences in Beijing, looked at the silk made by the cribellate spider (Uloborus walckenaerius), which uses a little comb, or cribellum, to separate fibres and spin them into various kinds.

After making their observations, they fabricated fibres aimed at replicating the silk's microscopic structure.

"Our artificial spider silk not only mimics the structure of wet-rebuilt spider silk but also its directional water collection capability," they claim.

The breakthrough will help the development of man-made fibres that will help water collection and could also be used in manufacturing processes to snare airborne droplets, they believe.

Fog collection entails stretching out nets or canvas on poles and using the mesh to catch moisture from the breeze. The runoff is collected in a pipe or a trough on the ground.

The technique, pioneered in the coastal Andes, is being encouraged in poor, dry parts of the world, such as Nepal. It is also being promoted by charities as a useful tool to offset stress caused by global warming.

Explore further: Thinnest feasible nano-membrane produced

add to favorites email to friend print save as pdf

Related Stories

Fascinating Spider Silk

Apr 04, 2007

Stronger than steel and more elastic than rubber: spider silk is unsurpassed in its expandability, resistance to tearing, and toughness. Spider silk would be an ideal material for a large variety of medical and technical ...

Power thrust for spider silk

Apr 24, 2009

(PhysOrg.com) -- Spiderman would definitely have an easier time of things with this spider silk - for example, if he had to stop a getaway car moving off at 100 kilometres per hour. A five-millimetre-thick ...

Stretchy spider silks can be springs or rubber

May 31, 2008

It’s stronger than steel and nylon, and more extensible than Kevlar. So what is this super-tough material? Spider silk; and learning how to spin it is one of the materials industries’ Holy Grails. John Gosline has been ...

Recommended for you

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

gmurphy
5 / 5 (2) Feb 03, 2010
Outstanding, it would be interesting to know what the performance stats of a system like this are, how much water produced for a given humidity, etc
jscroft
1 / 5 (2) Feb 04, 2010
It is also being promoted by charities as a useful tool to offset water stress caused by global warming.


Seriously? Did PhysOrg accidentally delay publishing this article since 1998, or are the authors so blinded by their Statist political views that they just don't CARE about pesky facts?

It's been global COOLING for a decade. Sheesh.

More news stories

Innovative strategy to facilitate organ repair

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.