Stem cells rescue nerve cells by direct contact

Feb 01, 2010

Scientists at the Swedish medical university Karolinska Institutet have shown how transplanted stem cells can connect with and rescue threatened neurons and brain tissue. The results point the way to new possible treatments for brain damage and neurodegenerative diseases.

A possible strategy for treating neurodegenerative diseases is to transplant stem cells into the brain that prevent existing from dying. The method has proved successful in different models, but the mechanisms behind it are still unknown. According to one hypothesis, the stem cells mature into fully-mature neurons that communicate with the threatened ; according to another, the stem cells secrete various growth factors that affect the host neurons.

The new report, co-authored by several international research groups and lead by Karolinska Institutet, shows that stem cells transplanted into damaged or threatened nerve tissue quickly establish direct channels, called gap junctions, to the nerve cells. Stem cells actively bring diseased neurons back from the brink via cross-talk through gap junctions, the connections between cells that allow molecular signals to pass back and forth.

The study found that the nerve cells were prevented from dying only when these gap junctions were formed. The results were obtained from mice and human in cultivated brain tissue, and from a series of rodent models for human and acute brain injuries.

"Many different molecules can be transported through gap junctions," says Eric Herlenius, who led the study. "This means that a new door to the possible future treatment of neuronal damage has been opened, both figuratively and literally."

Explore further: Are my muscular dystrophy drugs working?

More information: "Communication via gap junctions underlies early functional and beneficial interactions between grafted neural stem cells and the host", Johan Jäderstad, Linda M. Jäderstad, Jianxue Li, Satyan Chintawar, Carmen Salto, Massimo Pandolfo, Vaclav Ourednik, Yang D. Teng, Richard L. Sidman, Ernest Arenas, Evan Y. Snyder and Eric Herlenius, PNAS Online Early Edition, 1 Feb 2010.

add to favorites email to friend print save as pdf

Related Stories

Cholesterol necessary for brain development

Oct 02, 2009

A derivative of cholesterol is necessary for the formation of brain cells, according to a study from the Swedish medical university Karolinska Institutet. The results, which are published in the journal Cell Stem Cell, can he ...

Recommended for you

Are my muscular dystrophy drugs working?

1 hour ago

People with muscular dystrophy could one day assess the effectiveness of their medication with the help of a smartphone-linked device, a new study in mice suggests. The study used a new method to process ...

Cell death proteins key to fighting disease

11 hours ago

Melbourne researchers have uncovered key steps involved in programmed cell death, offering new targets for the treatment of diseases including lupus, cancers and neurodegenerative diseases.

Unlocking the secrets of pulmonary hypertension

Oct 30, 2014

A UAlberta team has discovered that a protein that plays a critical role in metabolism, the process by which the cell generates energy from foods, is important for the development of pulmonary hypertension, a deadly disease.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.