Stem cells rescue nerve cells by direct contact

Feb 01, 2010

Scientists at the Swedish medical university Karolinska Institutet have shown how transplanted stem cells can connect with and rescue threatened neurons and brain tissue. The results point the way to new possible treatments for brain damage and neurodegenerative diseases.

A possible strategy for treating neurodegenerative diseases is to transplant stem cells into the brain that prevent existing from dying. The method has proved successful in different models, but the mechanisms behind it are still unknown. According to one hypothesis, the stem cells mature into fully-mature neurons that communicate with the threatened ; according to another, the stem cells secrete various growth factors that affect the host neurons.

The new report, co-authored by several international research groups and lead by Karolinska Institutet, shows that stem cells transplanted into damaged or threatened nerve tissue quickly establish direct channels, called gap junctions, to the nerve cells. Stem cells actively bring diseased neurons back from the brink via cross-talk through gap junctions, the connections between cells that allow molecular signals to pass back and forth.

The study found that the nerve cells were prevented from dying only when these gap junctions were formed. The results were obtained from mice and human in cultivated brain tissue, and from a series of rodent models for human and acute brain injuries.

"Many different molecules can be transported through gap junctions," says Eric Herlenius, who led the study. "This means that a new door to the possible future treatment of neuronal damage has been opened, both figuratively and literally."

Explore further: Hearing quality restored with bionic ear technology used for gene therapy

More information: "Communication via gap junctions underlies early functional and beneficial interactions between grafted neural stem cells and the host", Johan Jäderstad, Linda M. Jäderstad, Jianxue Li, Satyan Chintawar, Carmen Salto, Massimo Pandolfo, Vaclav Ourednik, Yang D. Teng, Richard L. Sidman, Ernest Arenas, Evan Y. Snyder and Eric Herlenius, PNAS Online Early Edition, 1 Feb 2010.

add to favorites email to friend print save as pdf

Related Stories

Cholesterol necessary for brain development

Oct 02, 2009

A derivative of cholesterol is necessary for the formation of brain cells, according to a study from the Swedish medical university Karolinska Institutet. The results, which are published in the journal Cell Stem Cell, can he ...

Recommended for you

LED exposure is not harmful to human dermal fibroblasts

Apr 23, 2014

There was a time when no one thought about light bulbs—one blew, you screwed another one in. Nowadays, it's more complicated, as energy efficiency concerns have given rise to a slew of options, including ...

User comments : 0

More news stories

New breast cancer imaging method promising

The new PAMmography method for imaging breast cancer developed by the University of Twente's MIRA research institute and the Medisch Spectrum Twente hospital appears to be a promising new method that could ...

Breast cancer replicates brain development process

New research led by a scientist at the University of York reveals that a process that forms a key element in the development of the nervous system may also play a pivotal role in the spread of breast cancer.

Research proves nanobubbles are superstable

The intense research interest in surface nanobubbles arises from their potential applications in microfluidics and the scientific challenge for controlling their fundamental physical properties. One of the ...

Using antineutrinos to monitor nuclear reactors

When monitoring nuclear reactors, the International Atomic Energy Agency has to rely on input given by the operators. In the future, antineutrino detectors may provide an additional option for monitoring. ...