Researchers propose novel theory for mammalian stem cell regulation

Jan 29, 2010

Linheng Li, Ph.D., Investigator, together with Hans Clevers, M.D., Ph.D., Director of the Hubrecht Institute in Utrecht, Netherlands, co-authored a prospective review published today by the journal Science that proposes a model of mammalian adult stem cell regulation that may explain how the coexistence of two disparate stem cell states regulates both stem cell maintenance and simultaneously supports rapid tissue regeneration.

Adult stem cells are crucial for physiological tissue renewal and regeneration following injury. Current models assume the existence of a single quiescent (resting) population of stem cells residing in a single niche of a given tissue.

The Linheng Li Lab and others have previously reported that primitive blood-forming stem cells can be further separated into quiescent (reserved) and active (primed) sub-populations. Emerging evidence indicates that quiescent and active stem cell sub-populations also co-exist in several tissues — including hair follicle, , bone marrow, and potentially in the — in separate yet adjacent microenvironments. In the review, Dr. Li proposes that quiescent and active stem cell populations have separate but cooperative functional roles.

"Both quiescent and active stem cells co-exist in separate 'zones' in the same tissue," explained Dr. Li. "Active stem cells are the 'primed' sub-population that account for the generation of corresponding tissues, whereas quiescent stem cells function as a 'back-up' or 'reserved' sub-population, which can be activated in response to the loss of active stem cells or to tissue damage."

The new model would explain how the balance can be regulated between stem cell maintenance and simultaneous support of rapid , not only at the individual cell level but also at the stem cell population level. The advantage of maintaining 'zoned' sub-populations of stem cells is to increase longevity of stem cells within organisms that have long life spans and large bodies.

The existence of two sub-populations of offers another advantage in the rapidly regenerating tissues in mammals by reducing the risk for mutations that cause tumors.

Intriguingly, cancers may utilize this same mechanism to maintain co-existing active-quiescent pools of stem cell sub-populations that support fast tumor growth (by active stem cells) while preserving the root of malignancy (by quiescent stem cells). This may explain the basis of drug resistance to cancer treatment.

"If this hypothesis is true, the critical question will be how to target quiescent drug-resistant cancer stem cells," said Dr. Li. "We will test this model in cancers in an effort to determine how to activate quiescent (drug-resistant) cancer stem cells for further targeting."

Explore further: Early detection and transplantation provide best outcomes for 'bubble boy' disease

Provided by Stowers Institute for Medical Research

5 /5 (3 votes)

Related Stories

Scientists isolate cancer stem cells

Sep 11, 2008

After years of working toward this goal, scientists at the OU Cancer Institute have found a way to isolate cancer stem cells in tumors so they can target the cells and kill them, keeping cancer from returning.

The making of an intestinal stem cell

Mar 05, 2009

Researchers have found the factor that makes the difference between a stem cell in the intestine and any other cell. The discovery reported in the March 6th issue of the journal Cell, a Cell Press publication, is an essent ...

Recommended for you

New malaria vaccine candidates identified

15 hours ago

Researchers have discovered new vaccine targets that could help in the battle against malaria. Taking a new, large-scale approach to this search, researchers tested a library of proteins from the Plasmodium fa ...

User comments : 0