Optical refrigeration expected to enhance airborne and spaceborne applications

Jan 29, 2010
Under an AFOSR, MURI grant, a team led by University of New Mexico professor, Dr. Mansoor Sheik-Bahae and graduate student, Dr. Denis Seletskiy created the first-ever cryo (temperatures that can only be obtained by liquefying gases) cooler that can be applied to airborne and spaceborne sensors. Credit: Sheik-Bahae, University of New Mexico

Under an Air Force Office of Scientific Research, multi-university grant, a team led by University of New Mexico professor, Dr. Mansoor Sheik-Bahae created the first-ever all-solid-state cryocooler that can be applied to airborne and spaceborne sensors.

This technology, which allows coolers to reach temperatures so cold that they can only be obtained by liquefying gases, may lead to advances in superconducting electronics because it would enable miniaturization for cooling purposes.

Graduate students Denis Seletskiy and Seth Melgaard designed and performed the experiments at UNM's department of Physics and Astronomy in collaboration with researchers from Los Alamos National Laboratory and the University of Pisa, Italy.

"Optical refrigeration or solid state optical refrigeration technology offers many advantages over currently used, bulky mechanical coolers because it is vibration free (no moving parts), compact, lightweight and agile (fast turn-on and off)," said Sheik-Bahae.

Previously, only solid-state coolers based on standard were able to reach temperatures as low as 170K, and even so, only with minimal efficiency.

"We obtained cooling down to 155K using optical refrigeration,"said Sheik-Bahae. "We expect that material research may lead to temperatures dipping below 77K (boiling point of ) and in the future as low as 10K may be possible," he added.

In order to achieve their results, the scientists enhanced cooling efficiency by exploiting resonances in the absorption spectrum, growing pure crystals, using thin optical fibers, keeping their sample in thermal isolation inside a vacuum and by trapping laser light in a resonant space.

In the future Dr. Sheik-Bahae and his team will continue collaborations with Professor Mauro Tonelli and his researchers at the University of Pisa in Italy as well as with Dr.

Richard Epstein of the Los Alamos National Lab. Together they plan to research product purity and new materials for cryocoolers.

"We are also pursuing optical pump sources that can further enhance cooling efficiency of the devices," he said.

Explore further: First in-situ images of void collapse in explosives

Provided by Air Force Office of Scientific Research

5 /5 (4 votes)

Related Stories

Scientists succeed in cooling solid material with laser

Jul 26, 2006

A team of researchers at the University of the Basque Country have experimentally demonstrated something that other scientists have been trying to achieve for decades: the cooling of erbium-doped materials with laser light.

New gallium nitride film method beats the heat

Feb 21, 2006

A team of Los Alamos National Laboratory scientists have developed a method for growing crystalline gallium nitride films at lower temperatures than industry standards. By eliminating the higher temperatures and harsh, reactive ...

Recommended for you

First in-situ images of void collapse in explosives

Jul 25, 2014

While creating the first-ever images of explosives using an x-ray free electron laser in California, Los Alamos researchers and collaborators demonstrated a crucial diagnostic for studying how voids affect ...

New approach to form non-equilibrium structures

Jul 24, 2014

Although most natural and synthetic processes prefer to settle into equilibrium—a state of unchanging balance without potential or energy—it is within the realm of non-equilibrium conditions where new possibilities lie. ...

Nike krypton laser achieves spot in Guinness World Records

Jul 24, 2014

A set of experiments conducted on the Nike krypton fluoride (KrF) laser at the U.S. Naval Research Laboratory (NRL) nearly five years ago has, at long last, earned the coveted Guinness World Records title for achieving "Highest ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

vivcollins
not rated yet Jan 29, 2010
Would love to know more about that, for instance how much heat can it move at those temperatures?
seneca
not rated yet Jan 30, 2010
This is an important finding, as the lifetime of infrared telescopes like Spitzer or Planck is limited by the amount of helium supplies, which are used for their cooling.