The art of controlling a robot

Jan 28, 2010

Robots are used in many different areas, for instance in factories, in space and in health care. To plan and control the motions of a robot is a challenging task, which Uwe Mettin from Umeľ University, Sweden, has analyzed in his doctoral thesis.

A typical robot is an electro-mechanical device that consists of several joints, which enable the individual parts of the body structure to move. Actuators, such as electric motors, are used to apply forces, which cause a motion. Sensors give the current state of the robot to a control system. The main problem in planning and controlling robot motion is to shape and eventually apply forces in such a way that a desired movement is achieved despite of external disturbances and uncertainties in the mathematical model description.

Uwe Mettin’s thesis provides generic principles for the challenging motion planning and control problem of so-called underactuated mechanical systems. These robots have one or more non-actuated joints, which results in a decreased versatility. On the other hand they can be more efficient and simpler compared with their fully actuated alternatives. In the thesis Uwe Mettin presents dynamic walking robots, ball dribbling and ball pitching robots as application examples. An interesting observation is that typical human movements are also characterized by weakly-actuated or passive joints and Uwe Mettin reveals some insight from a control engineering perspective.

The novelty of the suggested approach is to use a geometric representation of motion in a systematic fashion. This helps simplifying the planning of desired motions, gives an analytical insight into characteristics, and allows designing a control algorithm that can be implemented in the real system.

For fully actuated mechanical systems, such as industrial robots, there are standard tools that provide a tractable solution for motion planning and control design. Still, the problem of generating efficient and optimal movements is nontrivial due to actuator limitations and motion-dependent limits on velocities and accelerations. It is especially challenging for robots that possess more joints than those required for a particular task, which enhances dexterity in real-world applications.

Hydraulic cranes on forestry machines serve as an application example in the thesis and the objective is to automate parts of the process to assist the driver, which can save both time and energy consumption in the forest industry.

Explore further: Firm combines 3-D printing with ancient foundry method

More information: Read the abstract and/or full dissertation at: urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-30024

add to favorites email to friend print save as pdf

Related Stories

Space Robot Can Autonomously Reconfigure Itself

Jun 15, 2009

A robot designed to work in space should ideally be a Jack of all trades, with the ability to perform a wide variety of tasks by itself. By having one robot that can handle many jobs, astronauts can cut down ...

$411,000 grant to fund robot-replacing technology

Aug 25, 2004

Florida Institute of Technology and Univeristy of Dayton collaborate on grant The tables are being turned on robots. Once feared to be stealing jobs from people, now robots will have jobs taken from them. A project of Flor ...

Proving That Shape-Shifting Robots Can Get a Move On

Sep 16, 2004

It started with tennis balls. As a former collegiate tennis player, Daniela Rus habitually rolls two tennis balls around in her hand as she paces her office. As a robotics researcher at Dartmouth College, she ...

Robots climb up the wall (w/ Video)

Jan 19, 2010

(PhysOrg.com) -- A robotics scientist from Ben-Gurion University of the Negev in Beersheeba, Israel, has developed four different kinds of robots that climb up walls.

Recommended for you

Firm combines 3-D printing with ancient foundry method

Mar 27, 2015

A century-old firm that's done custom metal work for some of the nation's most prestigious buildings has combined 3-D printing and an ancient foundry process for a project at the National Archives Building in Washington, ...

Wearable device helps vision-impaired avoid collision

Mar 26, 2015

People who have lost some of their peripheral vision, such as those with retinitis pigmentosa, glaucoma, or brain injury that causes half visual field loss, often face mobility challenges and increased likelihood ...

Applications of optical fibre for sensors

Mar 26, 2015

Mikel Bravo-Acha's PhD thesis has focused on the applications of optical fibre as a sensor. In the course of his research, conducted at the NUP/UPNA-Public University of Navarre, he monitored a sensor fitted to optical fibre ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.