Scientists discover how certain hormones control aspects of root branching in plants

Jan 27, 2010
The natural form of the wild type of common thale cress (Arabidopsis thaliana) with only a few root branches. Image: Ive De Smet

(PhysOrg.com) -- Roots are the most underestimated parts of a plant, even though they are crucial for water and nutrient uptake and consequently growth. In a world of changing water availability and an ever-increasing human population, it will therefore be crucial to understand how root development is controlled in plants. Scientists at the Max Planck Institute for Developmental Biology in Tübingen, Germany, now described that the plant hormone auxin together with an increased cell cycle activity leads to a boost in root branching in the common thale cress Arabidopsis thaliana.

In addition, they showed that two proteins that are crucial for embryo development also play a critical role in root branching. These results could be used to raise plants that are fast-growing even in dry and nutrient-poor soils (PNAS, January 25 - 29, 2010).

About two hundred years ago, Thomas Robert Malthus predicted that sooner or later a continuously growing world population would be confronted with famine, disease, and widespread mortality. Today, the world is facing the major challenge of providing food security for an ever-growing world population, which will require an increase in food production that is exceeding the one from previous decades. To achieve this, a new green revolution is needed, which will result in high yield plants that grow in soils with very low potential.

Astoundingly, when one thinks about a plant, mainly flowers, leaves, fruits and seeds come to mind, but one rarely considers the roots - the part hidden below the soil - as vital parts. Nevertheless, the , which consists of a main root that makes lateral branches, is without doubt the most important part of the plant, since without roots, a plant cannot take up nutrients and water, cannot stay upright, and cannot interact with advantageous symbiotic organisms.

Increased lateral root density after treatment with the hormone auxin. Image: Ive De Smet

Building on previous observations, a group of scientists in the Department of Gerd Jürgens at the Max Planck Institute for , together with scientists in Belgium, described the necessity of combining increased cell cycle activity and auxin, which is one of the major plant hormones, to give rise to an increase in root branching. Their study object was the common thale cress Arabidopsis thaliana. In addition, they showed that two proteins that are crucial for also play a critical role in root branching. Furthermore, they could for the first time demonstrate that the response to the hormone auxin takes place in discrete, successive steps.

"This knowledge is an important step towards an improved and increased root system that can support the required increase in plant yield, which will guarantee food security and which will support the role of plants as an energy source", said Ive De Smet. "Specifically, since water, nitrogen and phosphorus availability are often limiting, a root system that is able to more efficiently take up and store nutrients will allow the use of less fertilizer and will permit to survive in dry, less arable areas", the biologist added.

Explore further: Meteorite that doomed dinosaurs remade forests

More information: Bimodular auxin response controls organogenesis in Arabidopsis. PNAS Early Edition, January 25 - 29, 2010, www.pnas.org/cgi/doi/10.1073/pnas.0915001107

add to favorites email to friend print save as pdf

Related Stories

The emerging story of plant roots

Jul 15, 2008

An international group of European and US scientists led by the Centre for Plant Integrative Biology at The University of Nottingham have uncovered a fascinating new insight into the unseen side of plant biology — the root.

Hormone clue to root growth

Jul 06, 2009

(PhysOrg.com) -- Plant roots provide the crops we eat with water, nutrients and anchorage. Understanding how roots grow and how hormones control that growth is crucial to improving crop yields, which will be necessary to ...

Root or shoot? EAR calls the shots

Feb 07, 2008

Controlled by a tightly regulated choreography that determines what should go up and what should go down, plants develop along a polar axis with a root on one end and a shoot on the other.

How roots find a route

Feb 28, 2008

Scientists at the John Innes Centre in Norwich have discovered how roots find their way past obstacles to grow through soil. The discovery, described in the forthcoming edition of Science, also explains how ...

Recommended for you

Meteorite that doomed dinosaurs remade forests

2 hours ago

The meteorite impact that spelled doom for the dinosaurs 66 million years ago decimated the evergreens among the flowering plants to a much greater extent than their deciduous peers, according to a study ...

New camera sheds light on mate choice of swordtail fish

4 hours ago

We have all seen a peacock show its extravagant, colorful tail feathers in courtship of a peahen. Now, a group of researchers have used a special camera developed by an engineer at Washington University in ...

App helps homeowners identify spiders

6 hours ago

Each autumn the number of spiders seen indoors suddenly increases as males go on the hunt for a mate. The Society of Biology is launching a new app to help the public learn more about the spiders that will ...

User comments : 0