Antibiotics might team up to fight deadly staph infections

Jan 26, 2010

Researchers at the University of Illinois at Chicago and Israel's Weizman Institute of Science have found that two antibiotics working together might be more effective in fighting pathogenic bacteria than either drug on its own.

Individually, lankacidin and lankamycin, two antibiotics produced naturally by the microbe streptomyces, are marginally effective in warding off pathogens, says Alexander Mankin, professor and associate director of the UIC Center for Pharmaceutical Biotechnology and lead investigator of the portion of the study conducted at UIC.

Mankin's team found that when used together, the two antibiotics are much more successful in inhibiting growth of dangerous pathogens such as MRSA, or methicillin-resistant Staphylococcus aureus, and possibly others.

MRSA is a that is resistant to certain antibiotics. According to a 2007 government report, more than 90,000 Americans get potentially deadly infections each year.

The research results are published in the Jan. 11 online edition of the of the USA.

Lankacidin and lankamycin act upon the ribosomes, the protein-synthesizing factories of the cell. A newly-made protein exits the ribosome through a tunnel through the ribosome body. Some antibiotics stave off an infection by preventing the ribosome from assembling proteins, while others bind in the tunnel and block the protein's passage.

Through the use of X-ray crystallography, which determines the arrangement of atoms in biological molecules, the Israeli team, led by Ada Yonath, a 2009 Nobel Prize winner, discovered the exact binding site of lankacidin in the ribosome. Mankin's group demonstrated that lankacidin prevents the from assembling new proteins.

However, when researchers realized that streptomyces also manufactures lankamycin, they became curious whether the two drugs might help each other. Biochemical analysis and molecular modeling showed that lankamycin binds in the ribosomal tunnel right next to lankacidin.

"What we found most amazing is that the two appeared to help each other in stopping pathogens from making new proteins and in inhibiting bacterial growth," Mankin said.

Today, many companies are attempting to make individual drugs better, Mankin said. What the research suggests is that in some cases, it is a "much better strategy not to improve individual drugs, but the combinations of drugs that can act together."

Explore further: Growing a blood vessel in a week

Related Stories

Scientists discover how some bacteria survive antibiotics

Apr 30, 2008

Researchers at the University of Illinois at Chicago have discovered how some bacteria can survive antibiotic treatment by turning on resistance mechanisms when exposed to the drugs. The findings, published in the April 24 ...

Biologists probe the machinery of cellular protein factories

Sep 13, 2006

Proteins of all sizes and shapes do most of the work in living cells, and the DNA sequences in genes spell out the instructions for making those proteins. The crucial job of reading the genetic instructions and synthesizing ...

Bacteria build walls to withstand antibiotics

Nov 01, 2005

Antibiotic resistant bacteria, which are proliferating in hospitals and causing major headaches for physicians, cheat death by finding ways to fortify their cell walls against the deadly drugs. The question is: how? New res ...

Nanotechnology used to probe effectiveness of antibiotics

Feb 04, 2009

A group of researchers led by scientists from the London Centre for Nanotechnology, in collaboration with a University of Queensland researcher, have discovered a way of using tiny nano-probes to help understand how an antibiotic ...

Recommended for you

Growing a blood vessel in a week

23 hours ago

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Quantum_Conundrum
5 / 5 (1) Jan 26, 2010
No crap geniuses.

This is common sense, because if something is immune to one anti-biotic it might not be immune to the other. So if you dose two or more anti-biotics you should decrease the chance of the pathogen surviving exponentially, therefore significantly preventing mutation in future strains.