Groundbreaking research shows platelets can reproduce in circulation

Jan 26, 2010

University of Utah researchers led an international team of scientists that is the first to report on the previously undescribed ability of platelets to reproduce themselves in the circulation. Their revolutionary findings were published online Jan. 19, 2010, in the journal Blood.

Platelets develop from found in the bone marrow, a process that is called thrombopoiesis. During the final stages of thrombopoiesis, platelets are shed from the of their precursors and then enter the . Because they lack nuclei, circulating platelets are often referred to as "cytoplasts."

Because DNA resides in the nucleus, platelets were previously considered incapable of reproducing themselves. However, according to this new study led by Hansjörg Schwertz, M.D., and Andrew S. Weyrich, Ph.D., both of the U of U School of Medicine, platelets are actually capable of giving rise to new platelets.

"Cells with nuclei typically split into two uniform that share identical ," says Schwertz, research assistant professor of surgery and lead author of the study. "In our experiments, we found that platelets increase in number by generating beaded extensions that resemble a pearl necklace. Development of these extensions, which contain two or more new platelets, does not require a nucleus."

Schwertz and his colleagues found that the newly formed platelets are structurally and functionally indistinguishable from normal platelets and are similar in size, shape, and . Importantly, the group also demonstrated that platelets produce progeny in human whole blood cultures. This suggests that new treatments may be devised to increase circulating platelet numbers in patients whose platelet counts are abnormally low because of a medical condition.

Platelets are one of the most abundant cells in the bloodstream and their primary function is to halt bleeding. Decreased platelet counts can increase a person's risk for bleeding complications. Conversely, if platelet counts are too high or platelets inappropriately stick to one another, individuals may be at increased risk for vascular disorders such as heart attacks.

In additional studies conducted in cooperation with Robert C. Blaylock, M.D., medical director of transfusion services at the University of Utah and professor of pathology, the group found that platelets used for transfusion are also capable of generating new platelets, even after they are stored in bags for five days. This suggests that platelet numbers may be expanded after they are removed from the body, a finding that could have a significant impact on transfusion medicine.

"More research is needed to understand how platelets reproduce themselves and whether newly formed platelets are identical to, or distinct from, the platelets that are formed directly from their bone marrow precursors," says Weyrich, professor of internal and molecular medicine at the University of Utah's Eccles Institute of Human Genetics and corresponding author of the study. "Nevertheless, our findings identify a new function of that has important bench-to-bedside implications."

Explore further: Mutant protein in muscle linked to neuromuscular disorder

Related Stories

Researchers take the inside route to halt bleeding

Dec 16, 2009

Blood loss is a major cause of death from roadside bombs to freeway crashes. Traumatic injury, the leading cause of death for people age 4 to 44, often overwhelms the body's natural blood-clotting process.

Blood's clotting cells harbor 'ticking time bombs'

Mar 22, 2007

Fragments of cells in the blood known as platelets—which form blood clots and assist in wound healing—have internal “clocks” that act like ticking time bombs, predetermining their death from the moment they are born, ...

Recommended for you

Gate for bacterial toxins found

3 hours ago

Prof. Dr. Dr. Klaus Aktories and Dr. Panagiotis Papatheodorou from the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg have discovered the receptor responsible ...

User comments : 0

More news stories

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

Ebola virus in Africa outbreak is a new strain

The Ebola virus that has killed scores of people in Guinea this year is a new strain—evidence that the disease did not spread there from outbreaks in some other African nations, scientists report.

Freight train industry to miss safety deadline

The U.S. freight railroad industry says only one-fifth of its track will be equipped with mandatory safety technology to prevent most collisions and derailments by the deadline set by Congress.