Scientists achieve first rewire of genetic switches

Jan 25, 2010

Researchers in Manchester have successfully carried out the first rewire of genetic switches, creating what could be a vital tool for the development of new drugs and even future gene therapies.

A team of scientists from the School of Chemistry and the Manchester Interdisciplinary Biocentre (MIB) at The University of Manchester have found a way of hijacking so-called 'riboswitches' and directing .

Working within of bacteria, chemical biologist Professor Jason Micklefield and his team have rewired these genetic switches so they are no longer activated by small naturally occurring molecules found in cells - but through the addition of a synthetic molecule.

The work builds on the recent discovery that these naturally occurring molecules can turn genes on and off by triggering riboswitches found within a large molecule called 'messenger RNA'.

The research was funded by the Biotechnology and Biological Sciences Research Council and Selective Chemical Intervention in Biological Systems Initiative.

In the latest research, when Manchester researchers added , they bound to the riboswitches and caused the genes to spark into life.

The findings are reported in the latest edition of (PNAS).

The Manchester team monitored how successfully they had re-wired the cells by observing the creation of a gene product that makes the cells glow green.

Dr Neil Dixon, a senior researcher in the team, said: "Being able to selectively activate and regulate genes could have tremendous impact in and the emerging field of synthetic biology.

"This technology could be used to turn on and off important biological pathways and processes, leading to a deeper understanding of how cells function.

"The next big challenge is to apply this technology to study biological processes within human cells. This could allow us to discover more about our hugely complex biological selves."

The Manchester team is now working on ways to simultaneously activate and control multiple using these re-wired riboswitches.

Explore further: Growing a blood vessel in a week

More information: "Reengineering orthogonally selective riboswitches" will be published online in Proceedings of the National Academy of Sciences (PNAS) during the week beginning 25 January 2010.

Related Stories

Scientists strike blow in superbugs struggle

Dec 05, 2007

Scientists from The University of Manchester have pioneered new ways of tweaking the molecular structure of antibiotics – an innovation that could be crucial in the fight against powerful super bugs.

Hairpins for switches

Dec 12, 2006

How does an organism know when it must produce a protein and in what amount? Clever control mechanisms are responsible for the regulation of protein biosynthesis. One such type of mechanism, discovered only a few years ago, ...

Recommended for you

Growing a blood vessel in a week

13 hours ago

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

16 hours ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 0