Genetic 'atlas' of cells will pinpoint causes of disease

Jan 25, 2010 By Chris Garbutt

(PhysOrg.com) -- Scientists at the University of Toronto have discovered a way to map the interactions of genes within a cell, a significant breakthrough that promises to help researchers better understand the causes of disease, and lead to more precise targeting of drug treatments.

Scientists at the University of Toronto have discovered a way to map the interactions of genes within a cell, a significant breakthrough that promises to help researchers better understand the causes of disease, and lead to more precise targeting of drug treatments.

While the genetic makeup of humans has been determined, the purpose and interactions of those genes have not been well-understood. An international study led by Professor Brenda Andrews, director of the Terrence Donnelly Centre for Cellular and Biomolecular Research, and Professor Charles Boone, a principal investigator at the Donnelly Centre, found a way to decipher the networks derived from natural . The results of the study were published in today's issue of the prestigious journal Science.

"No one has made a map of these genetic interactions," said Andrews. "This research has provided us with a functional view of the cell."

Working with cells from simple yeasts, the researchers developed a method to map the interactions within these cells, the first time this has been done for any organism. Because are remarkably similar genetically to , this mapping process has important implications for improving research into human health, such as better understanding the of disease.

The mapping process will enable scientists to develop a complete atlas of genetic interactions, thereby making it possible to decode the functions of all of the thousands of genes in a cell. Such an atlas will provide valuable information about the link between an individual's (a person's unique ) and phenotype (the behaviours of that individual's genes). This information will build understanding of what genetic interactions are going wrong when a disease happens in a body.

The U of T researchers were also able to map interactions between genes and chemicals, which allows researchers to see more precisely what happens to a cell when a particular drug is introduced.

"These types of maps will allow us to be much smarter in the use of drugs in the future," said Andrews. "By knowing the interactions of genes, we will be able to better predict the effect of a drug on a cell."

Explore further: Two-armed control of ATR, a master regulator of the DNA damage checkpoint

Related Stories

Research team maps cell interactions

Oct 29, 2008

(PhysOrg.com) -- Proteins make up the machinery of the cell. Their interaction with each other is responsible for how the cell functions within a living organism. Intrigued by what these interactions may look like, scientists ...

University of Toronto scientists map entire yeast genome

Nov 26, 2007

University of Toronto scientists have devised a tool to help understand and predict the state of a cell by successfully mapping all 70,000 nucleosomes in yeast. Nucleosomes wrap DNA before it is transformed into proteins ...

Recommended for you

Japanese scientist resigns over stem cell scandal

Dec 19, 2014

A researcher embroiled in a fabrication scandal that has rocked Japan's scientific establishment said Friday she would resign after failing to reproduce results of what was once billed as a ground-breaking study on ...

'Hairclip' protein mechanism explained

Dec 18, 2014

Research led by the Teichmann group on the Wellcome Genome Campus has identified a fundamental mechanism for controlling protein function. Published in the journal Science, the discovery has wide-ranging implications for bi ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.