Genetic 'atlas' of cells will pinpoint causes of disease

Jan 25, 2010 By Chris Garbutt

(PhysOrg.com) -- Scientists at the University of Toronto have discovered a way to map the interactions of genes within a cell, a significant breakthrough that promises to help researchers better understand the causes of disease, and lead to more precise targeting of drug treatments.

Scientists at the University of Toronto have discovered a way to map the interactions of genes within a cell, a significant breakthrough that promises to help researchers better understand the causes of disease, and lead to more precise targeting of drug treatments.

While the genetic makeup of humans has been determined, the purpose and interactions of those genes have not been well-understood. An international study led by Professor Brenda Andrews, director of the Terrence Donnelly Centre for Cellular and Biomolecular Research, and Professor Charles Boone, a principal investigator at the Donnelly Centre, found a way to decipher the networks derived from natural . The results of the study were published in today's issue of the prestigious journal Science.

"No one has made a map of these genetic interactions," said Andrews. "This research has provided us with a functional view of the cell."

Working with cells from simple yeasts, the researchers developed a method to map the interactions within these cells, the first time this has been done for any organism. Because are remarkably similar genetically to , this mapping process has important implications for improving research into human health, such as better understanding the of disease.

The mapping process will enable scientists to develop a complete atlas of genetic interactions, thereby making it possible to decode the functions of all of the thousands of genes in a cell. Such an atlas will provide valuable information about the link between an individual's (a person's unique ) and phenotype (the behaviours of that individual's genes). This information will build understanding of what genetic interactions are going wrong when a disease happens in a body.

The U of T researchers were also able to map interactions between genes and chemicals, which allows researchers to see more precisely what happens to a cell when a particular drug is introduced.

"These types of maps will allow us to be much smarter in the use of drugs in the future," said Andrews. "By knowing the interactions of genes, we will be able to better predict the effect of a drug on a cell."

Explore further: First detailed microscopy evidence of bacteria at the lower size limit of life

Related Stories

Research team maps cell interactions

Oct 29, 2008

(PhysOrg.com) -- Proteins make up the machinery of the cell. Their interaction with each other is responsible for how the cell functions within a living organism. Intrigued by what these interactions may look like, scientists ...

University of Toronto scientists map entire yeast genome

Nov 26, 2007

University of Toronto scientists have devised a tool to help understand and predict the state of a cell by successfully mapping all 70,000 nucleosomes in yeast. Nucleosomes wrap DNA before it is transformed into proteins ...

Recommended for you

Malaria transmission linked to mosquitoes' sexual biology

Feb 26, 2015

Sexual biology may be the key to uncovering why Anopheles mosquitoes are unique in their ability to transmit malaria to humans, according to researchers at Harvard T. H. Chan School of Public Health and University of Per ...

Intermediary neuron acts as synaptic cloaking device

Feb 26, 2015

Neuroscientists believe that the connectome, a map of each and every connection between the millions of neurons in the brain, will provide a blueprint that will allow them to link brain anatomy to brain function. ...

Skeleton of cells controls cell multiplication

Feb 26, 2015

A research team from Instituto Gulbenkian de Ciencia (IGC; Portugal), led by Florence Janody, in collaboration with Nicolas Tapon from London Research Institute (LRI; UK), discovered that the cell's skeleton ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.