Neuron connections seen in 3-D

Jan 22, 2010
This three-dimensional visualization of synapses shows the tomography mail synaptic vesicles (yellow), cell membrane (purple), connectors between vesicles (red), filaments that anchor the vesicles to the cell membrane (blue), microtubule (dark green), material synaptic space (light green) and postsynaptic density (orange). Credit: Fernández-Busnadiego et al.

A team of researchers from the Max Planck Institute of Biochemistry, in Germany, led by the Spanish physicist Rubén Fernández-Busnadiego, has managed to obtain 3D images of the vesicles and filaments involved in communication between neurons. The method is based on a novel technique in electron microscopy, which cools cells so quickly that their biological structures can be frozen while fully active.

"We used electron cryotomography, a new technique in microscopy based on ultra-fast freezing of cells, in order to study and obtain three-dimensional images of synapsis, the cellular structure in which the communication between takes place in the brains of mammals" Rubén Fernández-Busnadiego, lead author of the study which features on the front cover of this month's Journal of Cell Biology and a physicist at the Max Planck Institute of , in Germany, tells SINC.

During synapsis, a presynaptic cell (emitter) releases neurotransmitters to another post-synaptic one (recipient), generating an electric impulse in it, thereby allowing nervous information to be transmitted. During this study, the researchers focused on the tiny vesicles (measuring around 40 nanometres in diameter), which transport and release the neurotransmitters from the presynaptic terminals.

"Thanks to the use of certain pharmacological treatments and the advanced 3D imaging analysis method we have developed, it is possible to observe the huge range of filamentous structures that are within the presynaptic terminal and interact directly with the synaptic vesicles, as well as to learn about their crucial role in responding to the electrical activity of the brain," explains Fernández-Busnadiego.

The filaments connect the vesicles and also connect them with the active area, the part of the cellular membrane from which the neurotransmitters are released. According to the Spanish physicist, these filamentous structures act as barriers that block the free movement of the vesicles, keeping them in their place until the electric impulse arrives, as well as determining the ease with which they will fuse with the membrane.

Sub-zero images

The technique upon which these discoveries are based, electron cryotomography, makes it possible to obtain three-dimensional images of the inside of cells and to minimise any changes to their structure. This is possible because the are not fixed with chemical reagents, but are vitrified - in other words they are frozen so fast that the water inside them does not have time to crystallise, and remains in solid state.

These samples, which are always maintained at liquid nitrogen temperatures (below -140 ºC), can be viewed using specially-equipped microscopes. In addition, this method does not require any kind of additional staining, meaning the density of the biological structures can be observed directly.

Explore further: The malaria pathogen's cellular skeleton under a super-microscope

More information: Rubén Fernández-Busnadiego, Benoît Zuber, Ulrike Elisabeth Maurer, Marek Cyrklaff, Wolfgang Baumeister y Vladan Lučić. "Quantitative analysis of the native presynaptic cytomatrix by cryoelectron tomography". The Journal of Cell Biology 188 (1):145-156, 11 de enero de 2010.

Provided by FECYT - Spanish Foundation for Science and Technology

5 /5 (3 votes)

Related Stories

New insight in nerve cell communication

Dec 22, 2009

Communication between nerve cells is vital for our bodies to function. Part of this communication happens through vesicles containing signalling molecules called neurotransmitters. The vesicle fuses with the ...

Fusion in the fast lane

Oct 19, 2006

Using fast digital imaging, scientists from the Max Planck Institute of Colloids and Interfaces in Potsdam, Germany, together with researchers from College de France, have succeeded in developing two different ...

Live recordings of cell communication

Aug 06, 2009

Neurons communicate with each other with the help of nano-sized vesicles. Disruption of this communication process is responsible for many diseases and mental disorders like e.g. depression. Nerve signals travel from one ...

'Friend' protein keeps nerve signals in check

Jul 24, 2006

Among the many thousands of proteins in the cell, some are essential players while some are "hangers-on." The neuronal protein syntaxin is essential. Without it, you die. A more recently discovered protein called tomosyn ...

Recommended for you

For resetting circadian rhythms, neural cooperation is key

14 hours ago

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

Rapid and accurate mRNA detection in plant tissues

15 hours ago

Gene expression is the process whereby the genetic information of DNA is used to manufacture functional products, such as proteins, which have numerous different functions in living organisms. Messenger RNA (mRNA) serves ...

For cells, internal stress leads to unique shapes

Apr 16, 2014

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

User comments : 0

More news stories

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...