New gene discovered for recessive form of brittle bone disease

Jan 20, 2010

Researchers at the National Institutes of Health and other institutions have discovered the third in a sequence of genes that accounts for previously unexplained forms of osteogenesis imperfecta (OI), a genetic condition that weakens bones, results in frequent fractures and is sometimes fatal.

The newly identified gene contains the information needed to make the protein Cyclophilin B. This protein is part of a complex of three proteins that modifies collagen, folding it into a precise molecular configuration, before it is secreted from cells. Collagen functions as molecular scaffolding that holds together bone, tendons, skin and other tissues.

Most types of osteogenesis imperfecta result from a dominant mutation in collagen itself, requiring only one copy of the mutated gene to bring about the disorder. Osteogenesis imperfecta involving the Cyclophilin B gene is a recessive trait, requiring two defective copies of the gene to cause the disorder.

"The discovery provides insight into a previously undescribed form of osteogenesis imperfecta," said Alan E. Guttmacher, M.D., acting director of NIH's Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD). "The advance also provides new information on how collagen folds during normal , which may also lead to greater understanding of other bone disorders."

The finding was published online Jan. 20 in the . The investigation involved a collaboration between researchers at the NICHD, led by Dr. Joan Marini, and the Hospital for Special Surgery in New York City. There, Dr. Cathleen Raggio diagnosed the children in the study as having a novel form of OI. In addition, researchers at the University of Washington in Seattle and the NIH's National Institute of Human Genome Research also took part in the study.

The NIH's National Institute of Arthritis and Musculoskeletal and Skin Diseases estimates that in the United States a minimum of 20,000 and possibly as many as 50,000 people are affected by osteogenesis imperfecta. About 85 percent of all OI cases are caused by mutations in the genes that contain the information needed to make collagen.

Researchers at the NICHD and other institutions had earlier learned that osteogenesis imperfecta could also be caused by defects in the protein complex that modifies collagen into its final form. Joan Marini, M.D., Ph.D., chief of NICHD's Bone and Extracellular Matrix Branch and colleagues had discovered that recessive mutations in the genes for two proteins in the complex, cartilage associated protein, or CRTAP, and prolyl 3-hydroxylase 1 ( P3H1), could result in severe forms of osteogenesis imperfecta. Individuals with mutations in CRTAP have all died in childhood. Mutations in P3H1 are sometimes fatal in early life.

In the current study, the researchers determined that a 12-year-old boy and his 4-year-old sister had mutations in the gene for Cyclophilin B. The children's parents were immigrants from Senegal, consanguineous (blood relatives) and were living in New York. Although the children's bones were brittle and highly susceptible to fracturing, they did not have shortening of the upper portion of limbs (rhizomelia) seen in the children with mutations in CRTAP and P3H1.

Proteins must be carefully folded into distinct configurations needed to function. Dr. Marini explained that a previous study concluded that Cyclophilin B was essential for folding collagen into its final form. In the current study, however, she and her coauthors found that the collagen from the two children was folded into its usual configuration, strongly suggesting that Cyclophilin B is not uniquely involved in its role in collagen folding, and that another, currently unknown, protein must also be involved.

Dr. Marini noted that additional research is needed to determine why, despite the seemingly normal collagen folding, the children with the recessive mutation in Cyclophilin B developed osteogenesis imperfecta.

Explore further: Researchers find new mechanism for neurodegeneration

add to favorites email to friend print save as pdf

Related Stories

Stem cell treatment for brittle bones in the womb

Jan 29, 2008

The extraordinary results of an in utero stem cell treatment could lead to a new treatment for babies with brittle bones, as well as a range of other disabling conditions, according to a maternal-fetal medicine researcher, ...

New evidence for theory of evolution found

Aug 01, 2006

U.S. geneticists say they have found evidence a category of genes, known as pseudogenes, serve no function -- a finding supporting the theory of evolution.

Scientists create super-strong collagen

Jan 12, 2010

(PhysOrg.com) -- A team of University of Wisconsin-Madison researchers has created the strongest form of collagen known to science, a stable alternative to human collagen that could one day be used to treat arthritis and ...

Research reveals structure and behavior of collagen

Feb 26, 2008

The structure and behavior of one of the most common proteins in our bodies has been resolved at a level of detail never before seen, thanks to new research performed at the Advanced Photon Source (APS) at the U.S. Department ...

Gene Gives a Boost to Tumor Suppression

Aug 18, 2006

Angiogenesis, or the growth of new blood vessels, is an important naturally occurring process in the body. As with normal tissues, tumors rely on angiogenesis to supply them with the oxygen and nutrients they need for growth.

Recommended for you

Researchers find new mechanism for neurodegeneration

17 hours ago

A research team led by Jackson Laboratory Professor and Howard Hughes Investigator Susan Ackerman, Ph.D., have pinpointed a surprising mechanism behind neurodegeneration in mice, one that involves a defect in a key component ...

Schizophrenia's genetic architecture revealed (w/ Video)

Jul 23, 2014

Queensland scientists are closer to effective treatments for schizophrenia after uncovering dozens of sites across the human genome that are strongly associated with a genetic predisposition to schizophrenia.

Mysterious esophagus disease is autoimmune after all

Jul 22, 2014

(Medical Xpress)—Achalasia is a rare disease – it affects 1 in 100,000 people – characterized by a loss of nerve cells in the esophageal wall. While its cause remains unknown, a new study by a team of researchers at ...

User comments : 0