Researchers take early step towards devising new antibiotics

Jan 19, 2010
Researchers take early step towards devising new antibiotics
The above image shows Gp2 (in yellow) disrupting communication between the bacteria’s DNA (in dark red) and its RNA Polymerase (in green/black)

(PhysOrg.com) -- Researchers have made the first step towards creating a new class of antibiotics in a study published last night in the journal Proceedings of the National Academy of Sciences.

The scientists, from Imperial College London, have revealed the structure of a protein called Gp2. This protein is produced by the T7 virus, which only targets and which infects and kills them by interfering with the way in which they express genes.

Gp2 works by interfering with an essential enzyme in called the RNA Polymerase, which represents the central machinery that enables information contained in their genes to be “read”. If the RNA Polymerase is unable to function, the bacteria cannot survive. Today’s is the first study to show the shape of a protein that is able to strongly inhibit RNA Polymerase and is derived from a virus.

The researchers behind today’s study hope that ultimately it will be possible to develop new drugs that mimic the structure and mode of action of Gp2 in order to combat bacterial infections.

There is already a group of clinically used antibiotics, known as rifamycin, which interfere with the RNA polymerase from bacteria, but against which many bacteria have developed resistance. Accordingly, the researchers hope that if new drugs can be devised that mimic Gp2, these will be less susceptible than existing antibiotics to , because they will work in a different way to the that are currently available.

The next step for this research will be for scientists to identify small molecule mimics of Gp2 that can be used to create these drugs.

Today’s findings were the result of an interdisciplinary collaboration between researchers from two cross-faculty groups at Imperial - the Centre for Molecular Microbiology and Infection (CMMI) and the Centre for Structural Biology (CSB). The corresponding authors of the study, Dr Sivaramesh Wigneshweraraj from the Department of Microbiology in Medicine, together with Professor Stephen Matthews and Dr Ernesto Cota from the Department of Life Sciences in Natural Sciences, also worked closely with colleagues at Rutgers University in New Jersey, USA, and the Russian Academy of Science.

Dr Sivaramesh Wigneshweraraj, who conducted the analyses of how Gp2 interferes with the intricate functionalities of the bacterial RNA polymerase, said: “This work is at a very early stage but knowing the shape of viral proteins like Gp2 and how they operate represents an important first step towards creating new drugs against bacteria from viruses that infect and kill bacteria”.

Professor Steve Matthews, from the Centre for Structural Biology, whose group calculated the structure of the protein, said: ”Our collaboration not only provides the first atomic resolution insights into this potent inhibitor, but also provide a useful blueprint for future collaborations between the CSB and CMMI aimed at combating bacterial infections”

Explore further: How steroid hormones enable plants to grow

Related Stories

Nanotechnology used to probe effectiveness of antibiotics

Feb 04, 2009

A group of researchers led by scientists from the London Centre for Nanotechnology, in collaboration with a University of Queensland researcher, have discovered a way of using tiny nano-probes to help understand how an antibiotic ...

Getting wise to the influenza virus' tricks

May 04, 2008

Influenza is currently a grave concern for governments and health organisations around the world. The worry is the potential for highly virulent bird flu strains, such as H5N1, to develop the ability to infect humans easily. ...

Recommended for you

Researchers discover new strategy germs use to invade cells

12 hours ago

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

12 hours ago

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

Aug 19, 2014

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

Histones and the mystery of cell proliferation

Aug 19, 2014

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

User comments : 0