Dense Gas in Ultraluminous Infrared Galaxies

Jan 15, 2010
An optical image of the luminous infrared galaxy system NGC 6240, which is actually a system of interacting galaxies. New research on this and similar galaxies suggests that the particularly efficient star formation underway largely originates in regions of very dense gas. Credit: Hubble Space Telescope

(PhysOrg.com) -- Ultraluminous infrared galaxies have luminosities that exceed a trillion suns.

(For comparison, the Milky Way's is only that of about ten billion suns.) Extreme infrared activity is known to be associated with interacting galaxies, and indeed shows that many ultraluminous systems are in collision. The physical mechanism(s) that actually power the luminosity, however, are still not understood. Might the same process(es) be underway at a low level in our galaxy?

One of the primary sources of global energy production in galaxies is star formation, and ultraluminous galaxies show all the diagnostic signs of having vigorous star formation.

In a new paper by CfA astronomer Desika Narayanan and six colleagues, the case is made that this activity is the result of a higher proportion of dense clouds of gas in these objects, and that these clumps are probably the result of the collision. The conclusion counters earlier arguments that X-rays from the nuclear are responsible by chemically enhancing the gas with molecules that facilitate .

The astronomers reached their conclusions by analyzing a set of thirty-four nearby, infrared luminous galaxies in the emitted light of three key molecules: CO, ionized HCO, and HCN. These species are sensitive probes of total gas densities ranging from about one thousand molecules per cubic centimeter to nearly one hundred million per cubic centimeter.

The team compared the brightness of the molecular emission from each species to the overall galaxy luminosity, and found a strong correlation in the sense that the brighter the lines, the higher the luminosity.

This result had been well known before, and seemed sensible since new stars form out of the gas. New in the study is the authors' finding that denser gas makes stars at a faster rate: the three species in this study, for example, sample gas that spans a factor of about one million in stellar production rates. The new research convincingly shows that other suggested mechanisms, for example enhanced chemical abundances, are less important. In addition, the paper provides a welcome, relatively comprehensive study of gas densities in luminous .

Explore further: Quest for extraterrestrial life not over, experts say

More information: www.cfa.harvard.edu/~dnarayan/website/research.htm

Related Stories

The Energy Sources of Ultraluminous Galaxies

Nov 27, 2009

(PhysOrg.com) -- Ultraluminous infrared galaxies ((ULIRGs) are galaxies whose luminosity exceeds that of a trillion suns; for comparison, the Milky Way galaxy has a typical (and much more modest) luminosity ...

Baby booms and birth control in space

Sep 25, 2007

Stars in galaxies are a bit similar to people: during the first phase of their existence they grow rapidly, after which a stellar birth control occurs in most galaxies. Thanks to new observations from Dutch ...

A Black Hole in Medusa's Hair

Mar 11, 2009

This composite image of the Medusa galaxy (also known as NGC 4194) shows X-ray data from NASA's Chandra X-ray Observatory in blue and optical light from the Hubble Space Telescope in orange. Located above ...

Hubble Eyes Star Birth in the Extreme

Jun 13, 2006

Staring into the crowded, dusty core of two merging galaxies, NASA's Hubble Space Telescope has uncovered a region where star formation has gone wild.

Recommended for you

Quest for extraterrestrial life not over, experts say

4 hours ago

The discovery of an Earth-sized planet in the "habitable" zone of a distant star, though exciting, is still a long way from pointing to the existence of extraterrestrial life, experts said Friday. ...

Continents may be a key feature of Super-Earths

8 hours ago

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...

Exoplanets soon to gleam in the eye of NESSI

11 hours ago

(Phys.org) —The New Mexico Exoplanet Spectroscopic Survey Instrument (NESSI) will soon get its first "taste" of exoplanets, helping astronomers decipher their chemical composition. Exoplanets are planets ...

User comments : 0

More news stories

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...

Treating depression in Parkinson's patients

A group of scientists from the University of Kentucky College of Medicine and the Sanders-Brown Center on Aging has found interesting new information in a study on depression and neuropsychological function in Parkinson's ...