Gladstone scientists identify role of key protein in ALS and frontotemporal dementia

Jan 12, 2010

Scientists at the Gladstone Institute of Neurological Disease (GIND) have identified the reason a key protein plays a major role in two neurodegenerative diseases. In the current edition of the Journal of Neuroscience, researchers in the laboratory of GIND Associate Director Steven Finkbeiner, MD, PhD have found how the protein TDP-43 may cause the neurodegeneration associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusion bodies (FTLDu). TDP-43, is the major component of protein aggregates in patients with these diseases. Mutations in the TDP-43 gene are also associated with familial forms of ALS and FTLDu.

"TDP-43 is a very exciting protein. We found that its location in the cell is a good indicator of the damage it may cause," said Finkbeiner, senior investigator and senior author on the study. "Our findings and our experimental model will allow further studies of this protein and how it results in disease."

Under normal circumstances, TDP-43 is a common protein that stays mostly in the nucleus. It has several beneficial functions, including binding DNA and RNA, inhibiting retroviruses, and helping with and nuclear body formation. It also shuttles mRNA to the .

However, in patients with ALS and FTLDu, TDP-43 is redistributed from the nucleus to the cytoplasm and forms insoluble TDP-43 aggregates in the nucleus, cytoplasm, or neuronal processes.

The Finkbeiner team developed a model system to find out how TDP-43 might be involved in . They used genetic engineering to add a fluorescent tag to normal or wildtype and mutant TDP-43 in rat neurons. The tag allowed them to easily see the intracellular location of the protein.

To determine the effects of the , the researchers used an automated microscope that can examine hundreds of thousands of neurons individually over several days. With this large amount of data, they could use sophisticated statistical analyses to follow the fate of each individual neuron and determine its risk of death at any given time.

Their experimental system used primary neurons. These neurons are taken directly from an animal to a culture dish and provide the best cells for experiments because they retain many of the features of cells in the intact brain. In fact, Dr. Finkbeiner's system showed many "normal" features of TDP-43 in neurons. For example, wildtype TDP-43 was found in the nucleus in healthy neurons. Mutant TDP-43 was also found in the nucleus, but there was more of the protein in the cytoplasm.

Several neurons developed aggregates of the protein called inclusion bodies, which are often found in diseased neurons. In addition, the system can be easily manipulated by the investigators, making it a valuable tool for dissecting the biological mechanisms underlying diseases associated with TDP-43 deposition.

"We expect this system to be very helpful to other investigators," explained Finkbeiner.

The researchers found that the mutant TDP-43 was toxic to and that more of it was found in the cytoplasm. Although the mutant protein formed inclusion bodies, these did not affect the risk of cell death. However, the amount of cytoplasmic TDP-43 was a strong and independent predictor of neuronal death. Using genetic manipulations, they showed that targeting wild-type TDP-43 to the cytoplasm is sufficient to recreate the toxicity associated with mutant TDP43. On the other hand, the toxic effect of the mutant protein could be blunted by preventing its export from the nucleus. It seems as if the toxicity of the mutation depends on cytoplasmic mislocalization of TDP-43.

"Our results indicate that the mutant protein is mislocalized to the cytoplasm," Finkbeiner said. "Although we don't know the underlying mechanism, the seems to become toxic in the cytoplasm and then causes death of the neuron."

Explore further: 'Trigger' for stress processes discovered in the brain

add to favorites email to friend print save as pdf

Related Stories

More genes for Lou Gehrig's disease identified

Apr 07, 2008

In recent months a spate of mutations have been found in a disease protein called TDP-43 that is implicated in two neurodegenerative disorders: amyotrophic lateral sclerosis (ALS), also called Lou Gehrig’s disease, and ...

Recommended for you

'Chatty' cells help build the brain

18 hours ago

The cerebral cortex, which controls higher processes such as perception, thought and cognition, is the most complex structure in the mammalian central nervous system. Although much is known about the intricate ...

'Trigger' for stress processes discovered in the brain

Nov 27, 2014

At the Center for Brain Research at the MedUni Vienna an important factor for stress has been identified in collaboration with the Karolinska Institutet in Stockholm (Sweden). This is the protein secretagogin ...

New research supporting stroke rehabilitation

Nov 26, 2014

Using world-leading research methods, the team of Dr David Wright and Prof Paul Holmes, working with Dr Jacqueline Williams from the Victoria University in Melbourne, studied activity in an area of the brain ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.