Researchers trace HIV mutations that lead to drug resistance

Jan 11, 2010

Chemists at UC San Diego and statisticians at Harvard University have developed a novel way to trace mutations in HIV that lead to drug resistance. Their findings, once expanded to the full range of drugs available to treat the infection, would allow doctors to tailor drug cocktails to the particular strains of the virus found in individual patients.

"We want to crack the code of resistance," said Wei Wang, associate professor chemistry and biochemistry at UC San Diego who led the collaboration along with Jun Liu of Harvard. The team reports their work in this week's early online edition of the .

replicates quickly, but the copies are imprecise. The constant mutation has made difficult to treat, much less cure, because drugs designed to interrupt the cycle of infection fail when their targets change.

To better understand which matter for , the researchers compared sequences of HIV taken from patients treated with specific drugs to those from untreated patients. Using a novel statistical method, they identified clusters of mutations that seemed to be working together to help the virus escape treatment.

One drug, indinavir, targets a protein called protease, which the virus needs to assemble the capsule it uses to invade new cells. Substitutions in ten different places on protease occurred in patients who were taking the drug, but what combination of mutations would hinder the action of the drug wasn't clear before this analysis.

Chemists can determine how a drug fits to a particular protein using computer modeling, but those computations take considerable time. Evaluating all possible combinations of those 10 substitutions is impractical. The statistical screen narrowed down the possibilities.

"People never looked at this, because they didn't know which mutation or which combination of mutations to study," Wang said. "That's the advantage of using the statistical method first to find the patterns. After the statisticians discovered the connections between mutations, then we focused on those combinations. We built structural models to understand the molecular basis of drug resistance."

Using the computing resources of the Center for Theoretical Biological Physics at UC San Diego where Wang is a senior scientist, they worked out how the substitutions would change the shape of protease and its affinity for the drug. One set of changes, for example, would tend to dislodge the drug from the pocket where it normally fits.

The researchers also determined that the mutations must happen in a particular order for replicants to survive treatment with indinavir, a window into how drug resistance develops.

Looking back into the database at samples taken from individual patients at several different times during the course of their treatment, the team found that mutations accumulated in the orders that they predicted would be possible during drug treatment. Sequential mutations that their models predicted would leave the virus vulnerable to drug treatment were not observed.

The team reports its results for two additional drugs, zidovudine and nevirapine, which target a different viral enzyme, in this paper and is extending its work to all nine drugs currently approved by the FDA to treat HIV.

Explore further: Research shows anti-HIV medicines can cause damage to fetal hearts

Related Stories

New HIV test may predict drug resistance

Jan 07, 2007

Researchers at Duke University Medical Center have developed a highly sensitive test for identifying which drug-resistant strains of HIV are harbored in a patient's bloodstream.

How 'hidden mutations' contribute to HIV drug resistance

Jul 31, 2008

One of the major reasons that treatment for HIV/AIDS often doesn't work as well as it should is resistance to the drugs involved. Now, scientists at McGill University have revealed how mutations hidden in previously ignored ...

Recommended for you

New study reveals why some people may be immune to HIV-1

Nov 20, 2014

Doctors have long been mystified as to why HIV-1 rapidly sickens some individuals, while in others the virus has difficulties gaining a foothold. Now, a study of genetic variation in HIV-1 and in the cells ...

Virus discovery could impact HIV drug research

Nov 20, 2014

A research team led by Portland State University (PSU) biology professor Ken Stedman has unlocked the structure of an unusual virus that lives in volcanic hot springs. The discovery could pave the way for better drugs to ...

UN warns over threat of AIDS rebound

Nov 19, 2014

South African actress Charlize Theron threw her weight Tuesday behind an urgent new UN campaign to end AIDS as a global health threat by 2030.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.